
V2V EDTECH LLP
Online Coaching at an Affordable Price.

OUR SERVICES:
Diploma in All Branches, All Subjects
Degree in All Branches, All Subjects
BSCIT / CS
Professional Courses

V2V EdTech LLP
v2vedtech.com v2vedtech

tel:+919326050669
https://v2vedtech.com/
https://www.youtube.com/@v2vedtechllp
https://www.instagram.com/v2vedtech/?igshid=MzRlODBiNWFlZA%3D%3D
tel:+919326050669
https://www.youtube.com/@v2vedtechllp
https://v2vedtech.com/
https://www.instagram.com/v2vedtech/?igshid=MzRlODBiNWFlZA%3D%3D

22226 PIC Notes | Programming in C Notes

Sr. No Unit Name

1 Program Logic Development

2 Basic of C Programming

3 Control Structures

4 Array and Structure

5 Functions

6 Pointers

Chapter 1 Program logic development

1 | P a g e

Fundamentals of algorithms

Explain the term algorithm

Algorithm is a stepwise set of instructions written to perform a specific task..

What are the Characteristics of an Algorithm?

 Clear and Unambiguous: Algorithm should be clear and unambiguous. Each of its
steps should be clear in all aspects and must lead to only one meaning.

 Well-Defined Inputs: If an algorithm says to take inputs, it should be well-defined
inputs.

 Well-Defined Outputs: The algorithm must clearly define what output will be yielded
and it should be well-defined as well.

 Finite-ness: The algorithm must be finite, i.e. it should not end up in an infinite loops
or similar.

 Feasible: The algorithm must be simple, generic and practical, such that it can be
executed upon will the available resources. It must not contain some future
technology, or anything.

 Language Independent: The Algorithm designed must be language-independent, i.e.
it must be just plain instructions that can be implemented in any language, and yet the
output will be same, as expected.

Chapter 1 Program logic development

2 | P a g e

Example:

Write an algorithm to calculate the addition of two given numbers.

Step 1: Start

Step 2: Read two numbers A and B

Step 3: Add A and B and store result in C

Step 4: Display C

Step 5: Stop

Explain the term Flowchart

Flowchart is a graphical representation of an algorithm.

Chapter 1 Program logic development

3 | P a g e

Basic Symbols used in Flowchart Designs

1. Terminal: Terminal is the first and last symbols in the flowchart.

2. Input/Output: Program instructions that take input from input devices and display

output on output devices are indicated with parallelogram in a flowchart.

3. Processing: All arithmetic processes such as adding, subtracting, multiplication and
division are indicated by action or process symbol.

4. Decision Diamond symbol represents a decision point. Decision based operations

such as yes/no question or true/false are indicated by diamond in flowchart.

5. Connectors: Whenever flowchart becomes complex or it spreads over more than one

page, it is useful to use connectors to avoid any confusions. It is represented by a
circle.

6. Flow lines: Flow lines indicate the exact sequence in which instructions are executed.
Arrows represent the direction of flow of control and relationship among different
symbols of flowchart.

What are the advantages Of Using FLOWCHARTS?

• Communication: Flowcharts are better way of communicating the logic of a system to all

concerned or involved.

• Effective analysis: With the help of flowchart, problem can be analysed in more effective

way therefore reducing cost and wastage of time.

• Proper documentation: Program flowcharts serve as a good program documentation,

which is needed for various purposes, making things more efficient.

Chapter 1 Program logic development

4 | P a g e

• Efficient Coding: The flowcharts act as a guide or blueprint during the systems analysis

and program development phase.

• Proper Debugging: The flowchart helps in debugging process.

• Efficient Program Maintenance: The maintenance of operating program becomes easy

with the help of flowchart. It helps the programmer to put efforts more efficiently on that

part

Write algorithm and flowchart of addition of two numbers

Algorithm Flowchart

Step 1: Start
Step 2: Read two numbers A and B
Step 3: Add A and B and store result in C
Step 4: Display C
Step 5: Stop

Write algorithm and flowchart for swapping of two numbers

Chapter 1 Program logic development

5 | P a g e

Algorithm Flowchart

Step 1: Start
Step 2: Read three numbers A, B and C
Step 3: C = A
Step 4: A = B
Step 5: B = C
Step 6: Print A and B
Step 7: Stop

Start

Read A, B and C

C=A
A=B
B=C

Print A and B

Stop

Write algorithm and flowchart to find sum and average of three numbers

Algorithm Flowchart

Step 1: Start
Step 2: Read three numbers A, B and C
Step 3: sum = A + B + C
Step 4: avg = sum/3
Step 5: Print sum and avg
Step 6: Stop

Start

Read A, B and C

sum = A + B + C

avg = sum/3

Print sum and avg

Stop

Chapter 1 Program logic development

6 | P a g e

Write an algorithm to determine whether a given number is divisible by 5 or not

Step 1- Start

Step 2- Read / input the number.

Step 3- if n%5==0 then goto step 5.

Step 4- else number is not divisible by 5 goto step 6.

Step 5- display the output number is divisible by 5.

Step 6- Stop

Write algorithm and draw flow-chart to print even numbers from 1 to 100.

Algorithm Flowchart

Algorithm

1. Start

2. Initialize the variable i to 1.

3. while i<=100
4. if i%2==0

5. print the number

6. increment value of i

7. stop

Algorithm & Flowchart to find the largest of two numbers

Chapter 1 Program logic development

7 | P a g e

Algorithm Flowchart

Algorithm

Step-1 Start

Step-2 Input two numbers say

NUM1,NUM2 Step-3 IF NUM1 >

NUM2 THEN print largest is

NUM1 ELSE print largest is NUM2

ENDIF

Step-4 Stop

Algorithm & Flowchart to find the given number is odd or even.

Algorithm Flowchart

Step 1: Start

Step 2: [Take Input] Read: Number

Step 3: Check: If Number%2 == 0 Then

Print : N is an Even Number.

Else

Print : N is an Odd Number.

Step 4: Exit

Algorithm & Flowchart to find the largest of three numbers

Chapter 1 Program logic development

8 | P a g e

Algorithm Flowchart

Step-1 Start

Step-2 Read three numbers say

num1,num2, num3

Step-3 if num1>num2 then go to

step-5

Step-4 IF num2>num3 THEN

print num2 is largest ELSE print

num3 is largest ENDIF GO TO

Step-6

Step-5 IF num1>num3 THEN

print num1 is largest ELSE print

num3 is largest ENDIF

Step-6 Stop

Algorithm & Flowchart to find Factorial of number n (n!=1x2x3x…n)

Algorithm Flowchart

step 1. Start

step 2. Read the number n

step 3. [Initialize]

i=1, fact=1

step 4. Repeat step 4 through 6 until i=n

step 5. fact=fact*i

step 6. i=i+1

step 7. Print fact

step 8. Stop

Algorithm & Flowchart to find if a number is prime or not

Chapter 1 Program logic development

9 | P a g e

Algorithm Flowchart

Step-1 Start

Step-2 Input NUM

Step-3 R=SQRT(NUM)

Step-4 I=2

Step-5 IF (I > R) THEN

Write NUM is Prime Number

Stop

ENDIF

Step 6 IF (NUM % I ==0) THEN

Write NUM is Not Prime

Stop

ENDIF

Step-7 I = I + 1

Step-8 Go to Step-5

What is Pseudocode

Definition: Pseudocode is an informal way of programming description that does not

require any strict programming language syntax or underlying technology considerations.

It is used for creating an outline or a rough draft of a program.

Example:

Write pseudo code that will perform the following.

a) Read in 5 separate numbers.

b) Calculate the average of the five numbers.

Chapter 1 Program logic development

10 | P a g e

c) Find the smallest (minimum) and largest (maximum) of the five entered numbers.

a) Write "please enter 5 numbers"

Read n1,n2,n3,n4,n5

b) Write "The average is"

Set avg to (n1+n2+n3+n4+n5)/5

Write avg

c) If(n1 < n2)

Set max to n2

Else

Set max to n1

If(n3 > max)

Set max to n3

If(n4 > max)

Set max to n4

If(n5 > max)

Set max to n5

Write "The max is"

Write max

C Program to Find Volume and Surface Area of Sphere

The formula used in this program are Surface_area = 4 * Pi * r2, Volume = 4/3 * Pi * r3

where r is the radius of the sphere, Pi= 22/7

Chapter 1 Program logic development

11 | P a g e

/*

* C Program to Find Volume and Surface Area of Sphere

*/

#include <stdio.h>

#include <math.h>

int main()

{

float radius;

float surface_area, volume;

printf("Enter radius of the sphere : \n");

scanf("%f", &radius);

surface_area = 4 * (22/7) * radius * radius;

volume = (4.0/3) * (22/7) * radius * radius * radius;

printf("Surface area of sphere is: %.3f", surface_area);

printf("\n Volume of sphere is : %.3f", volume);

return 0;

}

Output

Enter radius of the sphere :

40

Surface area of sphere is: 19200.000

Volume of sphere is : 256000.000

C program to swap two numbers (interchange the content of two variables)

#include <stdio.h>

int main()

{

int x, y, t;

printf("Enter two integers\n");

scanf("%d%d", &x, &y);

Chapter 1 Program logic development

12 | P a g e

printf("Before Swapping\nFirst integer = %d\nSecond integer = %d\n", x, y);

t = x;

x = y;

y = t;

printf("After Swapping\nFirst integer = %d\nSecond integer = %d\n", x, y);

return 0;

}

The output of the program:

Enter two integers

23

45

Before Swapping

First integer = 23

Second integer = 45

After Swapping

First integer = 45

Second integer = 23

If a five-digit number is input through the keyboard, write a program to calculate the

sum of its digits. (Hint: Use the modulus operator ‘%’)

#include <stdio.h>

#include < conio.h>

int main()

{

long int Num;

int Digit1, Digit2,Digit3, Digit4, Digit5 , Sum=0;

Clrscr();

Printf(“Enter 5 digit Number : ”);

Scanf(“%ld”,&Num);

Digit1 = Num % 10;

Num = Num / 10;

Digit2 = Num % 10;

http://softwareengineershelpcenter.blogspot.com/2013/03/question-5-if-five-digit-number-is.html
http://softwareengineershelpcenter.blogspot.com/2013/03/question-5-if-five-digit-number-is.html

Chapter 1 Program logic development

13 | P a g e

Num = Num / 10;

Digit3 = Num % 10;

Num = Num / 10;

Digit4 = Num % 10;

Num = Num / 10;

Digit5 = Num % 10;

Num = Num / 10;

Sum = Digit1 + Digit2 + Digit3 + Digit4 + Digit5;

printf(“Sum of Digits = %d”, Sum);

getch();

Return 0;

}

Draw a flowchart for checking whether given number is prime or not.

Chapter 2 Basics of C Programming

1 | P a g e

History of C Language

C programming language was developed in 1972 by Dennis Ritchie at bell laboratories of
AT&T (American Telephone & Telegraph), located in the U.S.A.

Dennis Ritchie is known as the founder of the c language.

Initially, C language was developed to be used in UNIX operating system.

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson

Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

Features of C Language

C is the widely used language. It provides many features that are given below.

1. Simple

2. Machine Independent or Portable

3. Mid-level programming language

4. structured programming language

5. Rich Library

6. Memory Management

7. Fast Speed

8. Pointers

9. Recursion

10. Extensible

Chapter 2 Basics of C Programming

2 | P a g e

Basic Structure of C Program

Chapter 2 Basics of C Programming

3 | P a g e

First C Program

#include <stdio.h>

int main()

{

printf("Hello C Language");

return 0;

}

Save the file with name first.c

Output:

Hello C Language

Header Files

Header files are helping file of your C program which holds the definitions of various

functions and their associated variables that needs to be imported into your C program with

the help of pre-processor #include statement.

All the header file have a '.h' an extension that contains C function declaration and macro

definitions.

In other words, the header files can be requested using the preprocessor directive #include.

The default header file that comes with the C compiler is the stdio.h. (Standard input output)

Explain any four library functions under conio.h header file.

clrscr() -This function is used to clear the output screen.

getch() -It reads character from keyboard

getche()-It reads character from keyboard and echoes to o/p screen

putch - Writes a character directly to the console.

textcolor()-This function is used to change the text color

textbackground()-This function is used to change text background

Preprocessor directive: it includes information

required to execute specific function from
specified header file.

Chapter 2 Basics of C Programming

4 | P a g e

Give the significance of <math.h> and <stdio.h> header files.

enumerated Write syntax and use of pow ()function of <math.h> header file.

pow()- compute the power of a input value

Syntax:

double pow (double x, double y);

main() function in C

main() function is the entry point of any C program. It is the point at which execution of

program is started. When a C program is executed, the execution control goes directly to

the main() function. Every C program have a main() function.

In above syntax;

 void: is a keyword in C language, void means nothing, whenever we use void as a

function return type then that function nothing return. here main() function no return

any value.

 In place of void we can also use int return type of main() function, at that time main()

return integer type value.

 main: is a name of function which is predefined function in C library.

Character set of C

C language also has a set of characters which include alphabets, digits, and special symbols. C

language supports a total of 256 characters.

Every C program contains statements. These statements are constructed using words and

these words are constructed using characters from C character set. C language character set

contains the following set of characters...

void main()

{

.........

.........

}

Chapter 2 Basics of C Programming

5 | P a g e

1. Alphabets
2. Digits
3. Special Symbols

Alphabets

C language supports all the alphabets from the English language. Lower and upper case letters
together support 52 alphabets.

lower case letters - a to z

UPPER CASE LETTERS - A to Z

Digits

C language supports 10 digits which are used to construct numerical values in C language.

Digits - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Special Symbols

C language supports a rich set of special symbols that include symbols to perform
mathematical operations, to check conditions, white spaces, backspaces, and other special
symbols.

Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ | tab newline space NULL
bell backspace verticaltab etc.,

Every character in C language has its equivalent ASCII (American Standard Code for
Information Interchange) value.

C Tokens

Every C program is a collection of instructions and every instruction is a collection of some

individual units. Every smallest individual unit of a c program is called token. Every

instruction in a c program is a collection of tokens. Tokens are used to construct c programs

and they are said to the basic building blocks of a c program.

In a c program tokens may contain the following...

1. Keywords

2. Identifiers

3. Operators

4. Special Symbols

5. Constants

6. Strings

Chapter 2 Basics of C Programming

6 | P a g e

7. Data values

C Keywords

Whenever C compiler come across a keyword, automatically it understands its meaning.

Properties of Keywords

1. All the keywords in C programming language are defined as lowercase letters so they
must be used only in lowercase letters

2. Every keyword has a specific meaning, users can not change that meaning.
3. Keywords can not be used as user-defined names like variable, functions, arrays,

pointers, etc...
4. Every keyword in C programming language represents something or specifies some

kind of action to be performed by the compiler.

5. C has 32 Keywords as follows:

Keywords

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

In a C program, a collection of all the keywords, identifiers, operators, special symbols,

constants, strings, and data values are called tokens.

Keywords are the reserved words with predefined meaning which already known to
the compiler

Chapter 2 Basics of C Programming

7 | P a g e

do if static while

C Identifiers

Example

int marks;
char studentName[30];

Here, marks and studentName are identifiers.

Rules for Creating Identifiers

1. An identifier can contain letters (UPPERCASE and

lowercase), numerics & underscore symbol only.
2. An identifier should not start with a numerical value. It can start with a letter or an

underscore.
3. We should not use any special symbols in between the identifier even whitespace.

However, the only underscore symbol is allowed.
4. Keywords should not be used as identifiers.
5. There is no limit for the length of an identifier. However, the compiler considers the

first 31 characters only.
6. An identifier must be unique in its scope.

C data types

In the c programming language, data types are classified as follows...

1. Primary data types (Basic data types OR Predefined data types)
2. Derived data types (Secondary data types OR User-defined data types)
3. Enumeration data types
4. Void data type

Primary data types

The primary data types in the C programming language are the basic data types. All the
primary data types are already defined in the system. Primary data types are also called as
Built-In data types. The following are the primary data types in c programming language...

1. Integer data type
2. Floating Point data type

The identifier is a user-defined name of an entity to identify it uniquely during the
program execution

The Data type is a set of value with predefined characteristics. data types are used to
declare variable, constants, arrays, pointers, and functions.

Chapter 2 Basics of C Programming

8 | P a g e

3. Double data type
4. Character data type

Integer Data type

The integer data type is a set of whole numbers. Every integer value does not have the
decimal value. We use the keyword "int" to represent integer data type in c.

Floating Point data types

Floating-point data types are a set of numbers with the decimal value. Every floating-point
value must contain the decimal value. The floating-point data type has two variants...

 float
 double

We use the keyword "float" to represent floating-point data type and "double" to represent
double data type in c. Both float and double are similar but they differ in the number of
decimal places. The float value contains 6 decimal places whereas double value contains 15 or
19 decimal places. The following table provides complete details about floating-point data
types.

Chapter 2 Basics of C Programming

9 | P a g e

Character data type

The character data type is a set of characters enclosed in single quotations. The following
table provides complete details about the character data type.

The following table provides complete information about all the data types in c programming
language...

void data type

The void data type means nothing or no value. Generally, the void is used to specify a function
which does not return any value. We also use the void data type to specify empty parameters
of a function.

Enumerated data type

An enumerated data type is a user-defined data type that consists of integer constants and
each integer constant is given a name. The keyword "enum" is used to define the enumerated
data type.

Chapter 2 Basics of C Programming

10 | P a g e

Here is the syntax of enum in C language,

The enum keyword is also used to define the variables of enum type. There are two ways to
define the variables of enum type as follows.

Here is an example of enum in C language,

Example

Output

The value of enum week: 10 11 12 13 10 16 17

The default value of enum day: 0 1 2 3 18 11 12

Derived data types

Derived data types are user-defined data types. The derived data types are also called as user-
defined data types or secondary data types. In the c programming language, the derived data
types are created using the following concepts...

 Arrays
 Structures
 Unions
 Enumeration

#include<stdio.h>

enum week{Mon=10, Tue, Wed, Thur, Fri=10, Sat=16, Sun};

enum day{Mond, Tues, Wedn, Thurs, Frid=18, Satu=11, Sund};

int main() {

printf("The value of enum week: %d\t%d\t%d\t%d\t%d\t%d\t%d\n\n",Mon , Tue, Wed,
Thur, Fri, Sat, Sun);

printf("The default value of enum day: %d\t%d\t%d\t%d\t%d\t%d\t%d",Mond , Tues,
Wedn, Thurs, Frid, Satu, Sund);

return 0;

}

enum enum_name{const1, const2, };

enum week{sunday, monday, tuesday, wednesday, thursday, friday, saturday};
enum week day;

Chapter 2 Basics of C Programming

11 | P a g e

C Variables

Every variable in c programming language must be declared in the declaration section before
it is used. Every variable must have a datatype that determines the range and type of values
be stored and the size of the memory to be allocated.

A variable name may contain letters, digits and underscore symbol. The following are the
rules to specify a variable name...

1. Variable name should not start with a digit.
2. Keywords should not be used as variable names.
3. A variable name should not contain any special symbols except underscore(_).
4. A variable name can be of any length but compiler considers only the first 31

characters of the variable name.

Declaration of Variable

Declaration Syntax:

Example

int number;

C Constants

In C programming language, a constant can be of any data type like integer, floating-point,
character, string and double, etc.,

Floating Point constants

A floating-point constant must contain both integer and decimal parts. Some times it may also
contain the exponent part. When a floating-point constant is represented in exponent form,
the value must be suffixed with 'e' or 'E'.

Example

The floating-point value 3.14 is represented as 3E-14 in exponent form.

datatype variableName;

Variable is a name given to a memory location where we can store different values of
the same datatype during the program execution.

A constant is a named memory location which holds only one value throughout the
program execution.

Chapter 2 Basics of C Programming

12 | P a g e

Character Constants

A character constant is a symbol enclosed in single quotation. A character constant has a
maximum length of one character.

Example

'A'
'2'
'+'

String Constants

A string constant is a collection of characters, digits, special symbols and escape sequences
that are enclosed in double quotations.

We define string constant in a single line as follows...
"This is btechsmartclass"

Creating constants in C

In a c programming language, constants can be created using two concepts...

1. Using the 'const' keyword
2. Using '#define' preprocessor

Using the 'const' keyword

We create a constant of any datatype using 'const' keyword. To create a constant, we prefix
the variable declaration with 'const' keyword.
The general syntax for creating constant using 'const' keyword is as follows...

OR

Example

const int x = 10 ;

Here, 'x' is a integer constant with fixed value 10.

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i = 9 ;

const int x = 10 ;

const datatype constantName ;

const datatype constantName = value ;

Chapter 2 Basics of C Programming

13 | P a g e

i = 15 ;

x = 100 ; // creates an error

printf("i = %d\nx = %d", i, x) ;

}

Using '#define' preprocessor
We can also create constants using '#define' preprocessor directive. When we create constant
using this preprocessor directive it must be defined at the beginning of the program (because
all the preprocessor directives must be written before the global declaration).
We use the following syntax to create constant using '#define' preprocessor directive...

Example
#define PI 3.14
Here, PI is a constant with value 3.14
 Example Program

#include<stdio.h>

#include<conio.h>

#defien PI 3.14

void main(){

int r, area ;

printf("Please enter the radius of circle : ") ;

scanf("%d", &r) ;

area = PI * (r * r) ;

printf("Area of the circle = %d", area) ;

}

C Operators

An operator is a symbol used to perform arithmetic and logical operations in a program. That
means an operator is a special symbol that tells the compiler to perform mathematical or logical
operations. C programming language supports a rich set of operators that are classified as
follows.

1. Arithmetic Operators
2. Relational Operators
3. Logical Operators

#define CONSTANTNAME value

Chapter 2 Basics of C Programming

14 | P a g e

4. Increment & Decrement Operators
5. Assignment Operators
6. Bitwise Operators
7. Conditional Operator
8. Special Operators

Arithmetic Operators (+, -, *, /, %)

Operator Meaning Example

+ Addition 10 + 5 =
15

- Subtraction 10 - 5 = 5

* Multiplication 10 * 5 = 50

/ Division 10 / 5 = 2

% Remainder of the
Division

5 % 2 = 1

Relational Operators (<, >, <=, >=, ==, !=)

Operator Meaning Example

< Returns TRUE if the first value is smaller than
second value otherwise returns FALSE

10 < 5 is
FALSE

> Returns TRUE if the first value is larger than
second value otherwise returns FALSE

10 > 5 is
TRUE

<= Returns TRUE if the first value is smaller than
or equal to second value otherwise returns
FALSE

10 <= 5 is
FALSE

>= Returns TRUE if the first value is larger than or
equal to second value otherwise returns FALSE

10 >= 5 is
TRUE

== Returns TRUE if both values are equal
otherwise returns FALSE

10 == 5 is
FALSE

!= Returns TRUE if both values are not equal
otherwise returns FALSE

10 != 5 is
TRUE

Logical Operators (&&, ||, !)

Operator Meaning Example

&& Logical AND - Returns TRUE if all
conditions are TRUE otherwise returns
FALSE

10 < 5 && 12 > 10
is FALSE

|| Logical OR - Returns FALSE if all
conditions are FALSE otherwise returns
TRUE

10 < 5 || 12 > 10
is TRUE

! Logical NOT - Returns TRUE if condition !(10 < 5 && 12 >

Chapter 2 Basics of C Programming

15 | P a g e

 is FLASE and returns FALSE if it is TRUE 10) is TRUE

 Logical AND - Returns TRUE only if all conditions are TRUE, if any of the conditions is
FALSE then complete condition becomes FALSE.
 Logical OR - Returns FALSE only if all conditions are FALSE, if any of the conditions is TRUE
then complete condition becomes TRUE.

Implement a program to demonstrate logical AND operator.

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

int j;

clrscr();

printf("Enter the values of i and j");

scanf("%d%d",&i,&j);

if(i==5 && j==5) {

printf("Both i and j are equal to 5");

} else {

printf("Both the values are different and either or both are not

equal to 5");

}

getch();

}

Increment & Decrement Operators (++ & --)

Operator Meaning Example

++ Increment - Adds one to existing value int a = 5;
a++; ⇒ a = 6

-- Decrement - Subtracts one from existing value int a = 5;
a--; ⇒ a = 4

Explain increment and decrement operator.
Increment operator is used to increment or increase the value of a variable by one. It is
equivalent to adding one to the value of the variable. The symbol used is ++. The decrement
operator is used to decrement or decrease the value of variable by 1. It is equivalent to
subtracting one from the value of the variable.

Chapter 2 Basics of C Programming

16 | P a g e

The symbol used is --.

Syntax: ++var or var++ for increment and --var or var—for decrement.

Example:
int m=5;
int n = ++m;
printf(%d%d”,m,n);

When the increment operator is used prior to the variable name m, the value of the variable m
is incremented first and then assigned to the variable n. The values of both the variable m and
n here will be 6. But if the increment operator ++ is used after the variable name, then the
value of the variable m is assigned to the variable n and then the value of m is increased.
Therefore the values of m and n will be 6 and 5 respectively.

Example for decrement operator
int m=5;
int n=--m;

Pre Increment and Post Increment

Pre-increment unary operator:
Pre-increment unary operator is used to increment the value of variable by one before using
in the expression. In the Pre-Increment operator concern value is first incremented and then
it used inside the expression with final updated value.
Syntax of Pre-increment unary operator:

 ++variable;
Example Pre-increment unary operator:

 ++i; //it is equivalents to the i=i+1; or i+=1 ;

Programming Code 1:
#include <stdio.h>
int main()
{
int i=5;
printf(“%d\n”,++i);
return 0;
}
Output: 6

Post-increment unary operator:
In Post-increment first of all the loop executes then value of the concern variable is
increments by 1 and return the value before present update state.

Syntax of Post-increment unary operator:

 variable++;

Chapter 2 Basics of C Programming

17 | P a g e

b = --var;

Example Post-increment unary operator:

 ++i;

Programming Code 1:

#include <stdio.h>

int main()

{

int i=5;

printf(“%d\n”,i++);

return 0;

}

Output: 5

Explanation: In the above example the value of ‘i’ is initialize by 5 after that applying the post

increment operation on variable ‘i’ then it updated 6 but the output is print before update i.e. 5.

Decrement Operator in C Programming :

1. Decrement operator is used to decrease the current value of variable by subtracting

integer 1.

2. Like Increment operator, decrement operator can be applied to only variables.

3. Decrement operator is denoted by –.

Different Types of Decrement Operation :

When decrement operator used in C Programming then it can be used as pre-decrement or

post-decrement operator.

A. Pre Decrement Operator

Pre-decrement operator is used to decrement the value of variable before using in the

expression. In the Pre-decrement value is first decremented and then used inside the

expression.

http://www.c4learn.com/c-programming/c-increment-operator/

Chapter 2 Basics of C Programming

18 | P a g e

b = var--;

Suppose the value of variable var is 10 then we can say that value of variable ‘var’ is firstly

decremented then updated value will be used in the expression.

B. Post Decrement Operator

Post-decrement operator is used to decrement the value of variable immediatly after executing

expression completely in which post decrement is used. In the Post-decrement old value is first

used in a expression and then old value will be decrement by 1.

Value of variable ‘var’ is 5. Same value will be used in expression and after execution of

expression new value will be 4.

 CProgram

Output :

Assignment Operators (=, +=, -=, *=, /=, %=)

Operator Meaning Example

= Assign the right-hand side value to left-hand side
variable

A = 15

+= Add both left and right-hand side values and store
the result into left-hand side variable

A += 10
⇒ A = A+10

-= Subtract right-hand side value from left-hand side
variable value and store the result
into left-hand side variable

A -= B
⇒ A = A-B

*= Multiply right-hand side value with left-hand side
variable value and store the result
into left-hand side variable

A *= B
⇒ A = A*B

Value of a : 10
Value of b : 9

#include<stdio.h>

void main()
{
int a,b,x=10,y=10;

a = x--;
b = --y;

printf("Value of a : %d",a);
printf("Value of b : %d",b);

}

Chapter 2 Basics of C Programming

19 | P a g e

/= Divide left-hand side variable value with right-
hand side variable value and store the result
into the left-hand side variable

A /= B
⇒ A = A/B

%= Divide left-hand side variable value with right-
hand side variable value and store the remainder
into the left-hand side variable

A %= B
⇒ A = A%B

Bitwise Operators (&, |, ^, ~, >>, <<)

Operator Meaning Example

& the result of Bitwise AND is 1 if all the bits are 1
otherwise it is 0

A & B
⇒ 16 (10000)

| the result of Bitwise OR is 0 if all the bits are 0
otherwise it is 1

A | B
⇒ 29 (11101)

^ the result of Bitwise XOR is 0 if all the bits are
same otherwise it is 1

A ^ B
⇒ 13 (01101)

~ the result of Bitwise once complement is
negation of the bit (Flipping)

~A
⇒ 6 (00110)

<< the Bitwise left shift operator shifts all the bits
to the left by the specified number of positions

A << 2
⇒ 100
(1100100)

>> the Bitwise right shift operator shifts all the bits
to the right by the specified number of
positions

A >> 2
⇒ 6 (00110)

Conditional Operator (?:)

Condition ? TRUE Part : FALSE Part;

Example

A = (10<15)?100: 200; ⇒ A value is 100

Explain conditional operator with example.

Conditional operators return one value if condition is true and returns another value is
condition is false. This operator is also called as ternary operator as it takes three arguments.

Syntax :

(Condition? true_value: false_value);

Example:

#include<stdio.h>

#include<conio.h>

void main() {

Chapter 2 Basics of C Programming

20 | P a g e

int i;

clrscr();

printf("Enter a number:");

scanf("%d",&i);

i%2==0?printf("%d is even",i):printf("%d is odd",i) ;

getch();

}

Special Operators (sizeof, pointer, comma, dot, etc.)

sizeof operator

This operator is used to find the size of the memory (in bytes) allocated for a variable. This
operator is used with the following syntax.

sizeof(variableName);

Example

sizeof(A); ⇒ the result is 2 if A is an integer

Pointer operator (*)

This operator is used to define pointer variables in c programming language.

Comma operator (,)

This operator is used to separate variables while they are declaring, separate the expressions
in function calls, etc.

Dot operator (.)

This operator is used to access members of structure or union.

Type Conversion

The type conversion is the process of converting a data value from one data type to another
data type automatically by the compiler. Sometimes type conversion is also called implicit
type conversion.

int i = 10 ;
float x = 15.5 ;
char ch = 'A' ;

Chapter 2 Basics of C Programming

21 | P a g e

i = x ; =======> x value 15.5 is converted as 15 and assigned to variable i

x = i ; =======> Here i value 10 is converted as 10.000000 and assigned to variable x

i = ch ; =======> Here the ASCII value of A (65) is assigned to i

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i = 95 ;

float x = 90.99 ;

char ch = 'A' ;

i = x ;

printf("i value is %d\n",i);

x = i ;

printf("x value is %f\n",x);

i = ch ;

printf("i value is %d\n",i);

}

Output:

Typecasting

Typecasting is also called an explicit type conversion. Compiler converts data from one data
type to another data type implicitly. When compiler converts implicitly, there may be a data
loss. In such a case, we convert the data from one data type to another data type using explicit
type conversion. To perform this we use the unary cast operator. The general syntax of
typecasting is as follows.

(TargetDatatype) DataValue

Chapter 2 Basics of C Programming

22 | P a g e

Example

int totalMarks = 450, maxMarks = 600 ;
float average ;

average = (float) totalMarks / maxMarks * 100 ;

In the above example code, both totalMarks and maxMarks are integer data values. When we
perform totalMarks / maxMarks the result is a float value, but the destination (average)
datatype is a float. So we use type casting to convert totalMarks and maxMarks into float data
type.

 Example Program

#include<stdio.h>

#include<conio.h>

void main()

{

int a, b, c ;

float avg ;

printf("Enter any three integer values : ") ;

scanf("%d%d%d", &a, &b, &c) ;

avg = (a + b + c) / 3 ;

printf("avg before casting = %f\n",avg);

avg = (float)(a + b + c) / 3 ;

printf("avg after casting = %f\n",avg);

}

Output:

C Input Functions

C programming language provides built-in functions to perform input operations. The input

operations are used to read user values (input) from the keyboard. The c programming

language provides the following built-in input functions.

Chapter 2 Basics of C Programming

23 | P a g e

1. scanf()

2. getchar()

3. getch()

4. gets()

5. fscanf()

scanf() function

The scanf() function is used to read multiple data values of different data types from the

keyboard. The scanf() function is built-in function defined in a header file called "stdio.h".

When we want to use scanf() function in our program, we need to include the respective

header file (stdio.h) using #include statement. The scanf() function has the following syntax...

Syntax:

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i;

printf("\nEnter any integer value: ");

scanf("%d",&i);

printf("\nYou have entered %d number",i);

}

Output:

scanf("format strings",&variableNames);

Chapter 2 Basics of C Programming

24 | P a g e

In the above example program, we used the scanf() function to read an integer value from the

keyboard and store it into variable 'i'.

The scanf function also used to read multiple data values of different or the same data types.

Consider the following example program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i;

float x;

printf("\nEnter one integer followed by one float value : ");

scanf("%d%f",&i, &x);

printf("\ninteger = %d, float = %f",i, x);

}

Output:

In the above example program, we used the scanf() function to read one integer value and one

float value from the keyboard. Here 'i' is an integer variable so we have used format string

%d, and 'x' is a float variable so we have used format string %f.

The scanf() function returns an integer value equal to the total number of input values read

using scanf function.

 Example Program

#include<stdio.h>

Chapter 2 Basics of C Programming

25 | P a g e

#include<conio.h>

void main(){

int i,a,b;

float x;

printf("\nEnter two integers and one float : ");

i = scanf("%d%d%f",&a, &b, &x);

printf("\nTotal inputs read : %d",i);

}

Output:

getchar() function

The getchar() function is used to read a character from the keyboard and return it to the

program. This function is used to read a single character. To read multiple characters we need

to write multiple times or use a looping statement. Consider the following example program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

char ch;

printf("\nEnter any character : ");

ch = getchar();

printf("\nYou have entered : %c\n",ch);

}

Output:

Chapter 2 Basics of C Programming

26 | P a g e

getch() function

The getch() function is similar to getchar function. The getch() function is used to read a

character from the keyboard and return it to the program. This function is used to read a

single character. To read multiple characters we need to write multiple times or use a looping

statement. Consider the following example program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

char ch;

printf("\nEnter any character : ");

ch = getch();

printf("\nYou have entered : %c",ch);

}

Output:

gets() function

The gets() function is used to read a line of string and stores it into a character array. The

gets() function reads a line of string or sequence of characters till a newline symbol enters.

Consider the following example program...

Chapter 2 Basics of C Programming

27 | P a g e

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

char name[30];

printf("\nEnter your favourite website: ");

gets(name);

printf("%s",name);

}

Output:

fscanf() function

The fscanf() function is used with the concept of files. The fscanf() function is used to read

data values from a file. When you want to use fscanf() function the file must be opened in

reading mode.

C Output Functions

C programming language provides built-in functions to perform output operation. The output

operations are used to display data on user screen (output screen) or printer or any file. The c

programming language provides the following built-in output functions...

1. printf()

2. putchar()

3. puts()

4. fprintf()

Chapter 2 Basics of C Programming

28 | P a g e

printf() function

The printf() function is used to print string or data values or a combination of string and data

values on the output screen (User screen). The printf() function is built-in function defined in

a header file called "stdio.h". When we want to use printf() function in our program we need

to include the respective header file (stdio.h) using the #include statement. The printf()

function has the following syntax...

Syntax:

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

printf("Hello! Welcome to btechsmartclass!!!");

}

Output:

In the above example program, we used the printf() function to print a string on to the output

screen.

The printf() function is also used to display data values. When we want to display data values

we use format string of the data value to be displayed.

Syntax:

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i = 10;

printf("message to be display!!!");

printf("format string",variableName);

Chapter 2 Basics of C Programming

29 | P a g e

float x = 5.5;

printf("%d %f",i, x);

}

Output:

In the above example program, we used the printf() function to print data values of variables i

and x on to the output screen. Here i is a an integer variable so we have used format string %d

and x is a float variable so we have used format string %f.

The printf() function can also be used to display string along with data values.

Syntax:

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i = 10;

float x = 5.5;

printf("Integer value = %d, float value = %f",i, x);

}

Output:

In the above program, we are displaying string along with data values.

printf("String format string",variableName);

Chapter 2 Basics of C Programming

30 | P a g e

Every function in the C programming language must have a return value. The printf() function

also have an integer as a return value. The printf() function returns an integer value

equivalent to the total number of characters it has printed.

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

int i;

i = printf("btechsmartclass");

printf(" is %d number of characters.",i);

}

Output:

In the above program, first printf() function printing "btechsmartclass" which is of 15

characters. So it returns integer value 15 to the variable "i". The value of "i" is printed in the

second printf() function.

Formatted printf() function

Generally, when we write multiple printf() statements the result is displayed in a single line

because the printf() function displays the output in a single line. Consider the following

example program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

printf("Welcome to ");

Chapter 2 Basics of C Programming

31 | P a g e

printf("btechsmartclass ");

printf("the perfect website for learning");

}

Output:

In the above program, there are 3 printf() statements written in different lines but the output

is displayed in single line only.

To display the output in different lines or as we wish, we use some special characters

called escape sequences. Escape sequences are special characters with special functionality

used in printf() function to format the output according to the user requirement. In the C

programming language, we have the following escape sequences...

Escape
sequence

Meaning

\n Moves the cursor to New Line
\t Inserts Horizontal Tab (5 characters space)
\v Inserts Vertical Tab (5 lines space)
\a Beep sound
\b Backspace (removes the previous character from its

current position)
\\ Inserts Backward slash symbol
\? Inserts Question mark symbol
\' Inserts Single quotation mark symbol
\" Inserts Double quotation mark symbol

Consider the following example program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

printf("Welcome to\n");

printf("btechsmartclass\n");

printf("the perfect website for learning");

}

Chapter 2 Basics of C Programming

32 | P a g e

Output:

putchar() function

The putchar() function is used to display a single character on the output screen. The

putchar() functions prints the character which is passed as a parameter to it and returns the

same character as a return value. This function is used to print only a single character. To

print multiple characters we need to write multiple times or use a looping statement.

Consider the following example program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

char ch = 'A';

putchar(ch);

}

Output:

puts() function

The puts() function is used to display a string on the output screen. The puts() functions

prints a string or sequence of characters till the newline. Consider the following example

program...

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

Chapter 2 Basics of C Programming

33 | P a g e

char name[30];

printf("\nEnter your favourite website: ");

gets(name);

puts(name);

}

Output:

fprintf() function

The fprintf() function is used with the concept of files. The fprintf() function is used to print a

line into the file. When you want to use fprintf() function the file must be opened in writting

mode.

Comment

A comment starts with a slash asterisk /* and ends with a asterisk slash */ and can be
anywhere in your program. Comments can span several lines within your C program.
Comments are typically added directly above the related C source code.

Example - Comment in Single Line

You can create an comment on a single line.
For example:

State any four math functions with its use.
sqrt() - square root of an integer
abs() - absolute value of an integer
sin() - compute the sine value of an input value
cos()- compute the cosine value of an input value
pow()- compute the power of a input value
floor()- round down the input value
ceil()- round up the input value

/* Author: TechOnTheNet.com */

// Author: TechOnTheNet.com

Chapter 2 Basics of C Programming

34 | P a g e

Develop a simple ‘C’ program for addition and multiplication of two integer numbers.
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,add,mul;
clrscr();
printf("Enter value for a and b:");
scanf("%d%d",&a,&b);
add=a+b;
mul=a*b;
printf("\nAddition of a and b=%d\n",add);
printf("\Multiplication of a and b=%d",mul);
getch();
}

Explain following functions:
getchar()
putchar()
getch()
putch()
with suitable examples.

getchar() -
It is function from stdio.h header file. This function is used to input a single character.
The enter key is pressed which is followed by the character that is typed. The character that is
entered is echoed.
Syntax:
ch=getchar();
Example:
void main()
{
char ch;
ch = getchar();
printf("Input Char Is :%c",ch);
}
During the program execution, a single character gets or read through the getchar(). The
given value is displayed on the screen and the compiler waits for another character to be
typed. If you press the enter key/any other characters and then only the given character is
printed through the printf function.

putchar() -
It is used from standard input (stdio.h) header file. This function is the other side of getchar. A
single character is displayed on the screen.
Syntax:
putchar(ch);
void main()
{
char ch='a';
putchar(ch);
getch();

Chapter 2 Basics of C Programming

35 | P a g e

}
getch() -
It is used from the console (conio.h) header file. This function is used to input a single
character. The character is read instantly and it does not require an enter key to
be pressed. The character type is returned but it does not echo on the screen.
Syntax:
ch=getch();
Where, ch - assigned the character that is returned by getch().
void main()
{
char ch;
ch = getch();
printf("Input Char Is :%c",ch);
}
During the program execution, a single character gets or read through the getch(). The given
value is not displayed on the screen and the compiler does not wait for another character to
be typed. And then, the given character is printed through the printf function.
putch()-
It is used from console input output header file (conio.h) This function is a counterpart of
getch(). Which means that it will display a single character on the screen.
The character that is displayed is returned.
Syntax:
putch(ch); Where, ch - the character that is to be printed.
void main()
{
char ch='a';
putch(ch)
}

State the use of printf() & scanf() with suitable example.
printf() & scanf():
printf() and scanf() functions are library functions in C programming language defined in
“stdio.h”.

printf() function is used to print the character, string, float, integer, octal and hexadecimal
values onto the output screen.

scanf() function is used to read character, string, numeric data from keyboard. %d format
specifier is used in printf() and scanf() to specify the value of an integer variable.
%c is used to specify character, %f for float variable, %s for string variable, and %x for
hexadecimal variable.

Example:
#include<stdio.h>
#include<conio.h>
void main() {
int i;
clrscr();
printf("Enter a number");
scanf("%d",&i);
printf("Entered number is: %d",i);

Chapter 2 Basics of C Programming

36 | P a g e

getch();
}

Program to convert given number of days into months and days in c
main ()

{
int months, days ;

printf("Enter days\n") ;
scanf("%d", &days) ;

months = days / 30 ;
days = days % 30 ;

printf("Months = %d Days = %d", months, days) ;
}

Output

Enter days
265
Months = 8 Days = 25

Enter days
364
Months = 12 Days = 4

Enter days
45
Months = 1 Days = 15

Program to calculate area of circle in c

#include<stdio.h>

int main() {

float radius, area;

printf("\nEnter the radius of Circle : ");
scanf("%d", &radius);

area = 3.14 * radius * radius;
printf("\nArea of Circle : %f", area);

return (0);

}
Output:

Enter the radius of Circle : 2.0

Chapter 2 Basics of C Programming

37 | P a g e

Area of Circle : 6.14

Program to find the maximum of three numbers

#include <stdio.h>
int main()
{

double n1, n2, n3;
printf("Enter three different numbers: ");
scanf("%lf %lf %lf", &n1, &n2, &n3);
if(n1>=n2 && n1>=n3)

printf("%.2f is the largest number.", n1);
if(n2>=n1 && n2>=n3)

printf("%.2f is the largest number.", n2);
if(n3>=n1 && n3>=n2)

printf("%.2f is the largest number.", n3);
return 0;

}

Program to check positive, negative or zero

#include <stdio.h>

int main()
{

int num;

/* Input number from user */
printf("Enter any number: ");
scanf("%d", &num);

if(num > 0)
{

printf("Number is POSITIVE");
}
if(num < 0)
{

printf("Number is NEGATIVE");
}
if(num == 0)
{

printf("Number is ZERO");
}

return 0;
}

Chapter 2 Basics of C Programming

38 | P a g e

C program to convert temperature from degree fahrenheit to Celsius Temperature
conversion formula

ormula to convert temperature from degree Fahrenheit to degree Celsius is given by -

/**
* C program to convert temperature from degree fahrenheit to celsius
*/

#include <stdio.h>

int main()
{

float celsius, fahrenheit;

/* Input temperature in fahrenheit */
printf("Enter temperature in Fahrenheit: ");
scanf("%f", &fahrenheit);

/* Fahrenheit to celsius conversion formula */
celsius = (fahrenheit - 32) * 5 / 9;

/* Print the value of celsius */
printf("%.2f Fahrenheit = %.2f Celsius", fahrenheit, celsius);

return 0;
}

Enter temperature in Fahrenheit: 205
205.00 Fahrenheit = 96.11 Celsius

C program to convert kilometers to miles, meters

#include
#include
void main()
{
float km, m, miles;
clrscr();
printf("Enter the distance in kilometers : ");
scanf("%f",&km);
m = km * 1000;
printf("The equivalent distance in meters is : %f",m);

float miles = km / 1.6;

Chapter 2 Basics of C Programming

39 | P a g e

printf("%f Miles", miles);

}
getch();
}

Program to convert temperature from degree Celsius to Kelvin

#include<stdio.h>

int main()
{
float k, cel;
printf("Enter the temperature in celsius: ");
scanf("%f", &cel);

k = (cel + 273.15) ; //temperature conversion formula
printf("\nTemperature in Kelvin: %.f", k);

return 0;}

Explain how formatted input can be obtain, give suitable
example.
Formatted input:
When the input data is arranged in a specific format, it is called formatted input. scanf
function is used for this purpose in C.

General syntax:
scanf(“control string”, arg1, arg2..);

Control string here refers to the format of the input data. It includes the conversion character
%, a data type character and an optional number that specifies the field width. It also may
contain new line character or tab. arg1, arg2 refers to the address of memory locations where
the data should be stored.

Example:
scanf(“%d”,&num1);
Eg:
#include<stdio.h>
#include<conio.h>
void main()
{
int i;
clrscr();
printf("Enter a number");
scanf("%d",&i);
printf("Entered number is: %d",i);
getch();
}

Chapter 3 Control Structures

1 | P a g e

Decision making in C

Decision making is about deciding the order of execution of statements based on certain

conditions or repeat a group of statements until certain specified conditions are met. C

language handles decision-making by supporting the following statements,

 if statement

 switch statement
 conditional operator statement (? : operator)

 goto statement

State any four decision making statement.

Decision making statement:

1. if statement

2. if-else statement

3. if-else-if ladder

4. Nested if-else statement

5. switch statement

6. conditional operator statement (? : operator)

Decision making with if statement

The if statement may be implemented in different forms depending on the complexity of
conditions to be tested. The different forms are,

1. Simple if statement

2. if... else statement

3. Nested if .. else statement

4. Using else if statement

Simple if statement

The general form of a simple if statement is,

if(expression)
{

statement inside;
}

statement outside;

Example:

#include <stdio.h>
void main()

Chapter 3 Control Structures

2 | P a g e

{
int x, y;
x = 15;
y = 13;
if (x > y)
{

printf("x is greater than y");
}

}
Output:
x is greater than y

if...else statement

The general form of a simple if...else statement is,

if(expression)

{
statement block1;

}

else
{

statement block2;

}

Chapter 3 Control Structures

3 | P a g e

If the expression is true, the statement-block1 is executed, else statement-block1 is skipped

and statement-block2 is executed.

Example:

#include <stdio.h>

void main()

{

int x, y;

x = 15;

y = 18;

if (x > y)

{
printf("x is greater than y");

}

else
{

printf("y is greater than x");

}
}

Output:
y is greater than x

Nested if ... else statement
The general form of a nested if . else statement is,

if(expression)

{
if(expression1)

{
statement block1;

}

else
{

statement block2;

}
}

else
{

statement block3;

}

Example:

#include <stdio.h>

void main()

{
int a, b, c;

Chapter 3 Control Structures

4 | P a g e

printf("Enter 3 numbers...");
scanf("%d%d%d",&a, &b, &c);

if(a > b)

{

if(a > c)
{

printf("a is the greatest");

}
else

{
printf("c is the greatest");

}

}
else

{

if(b > c)
{

printf("b is the greatest");
}

else

{
printf("c is the greatest");

}

}
}

C Program Enter the Student Marks and Find the Percentage and Grade

#include<stdio.h>
void main()
{

int m1,m2,m3,total;
float per;
clrscr();
printf("Enter 3 Nos.");
scanf("%D%D%D",&m1,&m2,&m3);
total=m1+m2+m3;
per=total*100/300;
if(per>=60&&per<=100)

printf("You are 1st :");
else if(per>=50&&per<=60)

printf("You are 2nd");
else if(per>=40&&per<=50)

printf("You are 3rd");
else

http://ecomputernotes.com/c-program/enter-the-student-marks-and-find-the-percentage-and-grade

Chapter 3 Control Structures

5 | P a g e

printf("You are Fail");
getch();

}

Switch statement in C

The switch statement allows us to execute one code block among many alternatives.

Syntax of switch...case

switch (expression)

{

case constant1:

// statements

break;

case constant2:

// statements
break;

.

.

.

default:

// default statements
}

switch Statement Flowchart

// Program to create a simple calculator
#include <stdio.h>
int main() {

char operator;
double n1, n2;
printf("Enter an operator (+, -, *, /): ");
scanf("%c", &operator);
printf("Enter two operands: ");
scanf("%lf %lf",&n1, &n2);
switch(operator)
{

case '+':
printf("%.1lf + %.1lf = %.1lf",n1, n2, n1+n2);
break;

Chapter 3 Control Structures

6 | P a g e

case '-':
printf("%.1lf - %.1lf = %.1lf",n1, n2, n1-n2);
break;

case '*':
printf("%.1lf * %.1lf = %.1lf",n1, n2, n1*n2);
break;

case '/':
printf("%.1lf / %.1lf = %.1lf",n1, n2, n1/n2);
break;

// operator doesn't match any case constant +, -, *, /
default:

printf("Error! operator is not correct");
}
return 0;

}
Output

Enter an operator (+, -, *,): -

Enter two operands: 32.5

12.4

32.5 - 12.4 = 20.1

Chapter 3 Control Structures

7 | P a g e

Example of switch statement

#include<stdio.h>

void main()
{

int a, b, c, choice;

while(choice != 3)
{

/* Printing the available options */

printf("\n 1. Press 1 for addition");

Chapter 3 Control Structures

8 | P a g e

printf("\n 2. Press 2 for subtraction");

printf("\n Enter your choice");

/* Taking users input */

scanf("%d", &choice);

switch(choice)

{

case 1:

printf("Enter 2 numbers");

scanf("%d%d", &a, &b);

c = a + b;

printf("%d", c);

break;
case 2:

printf("Enter 2 numbers");

scanf("%d%d", &a, &b);

c = a - b;
printf("%d", c);

break;

default:

printf("you have passed a wrong key");
printf("\n press any key to continue");

}

}
}

if...else Ladder

The if...else statement executes two different codes depending upon whether the test
expression is true or false. Sometimes, a choice has to be made from more than 2 possibilities.

The if...else ladder allows you to check between multiple test expressions and execute

different statements.

Syntax of nested if...else statement.

if (test expression1) {

// statement(s)
}

else if(test expression2) {
// statement(s)

}

else if (test expression3) {
// statement(s)

}

.

.

else {
// statement(s)

Chapter 3 Control Structures

9 | P a g e

}

Example 3: C if...else Ladder

// Program to relate two integers using =, > or < symbol

#include <stdio.h>

int main() {

int number1, number2;

printf("Enter two integers: ");

scanf("%d %d", &number1, &number2);

//checks if the two integers are equal.

if(number1 == number2) {
printf("Result: %d = %d",number1,number2);

}

//checks if number1 is greater than number2.

else if (number1 > number2) {
printf("Result: %d > %d", number1, number2);

}

//checks if both test expressions are false

else {

printf("Result: %d < %d",number1, number2);
}

return 0;

}

Output

Enter two integers: 12

23

Result: 12 < 23

write a program to check whether given year is leap or not

#include <stdio.h>

int main()
{

int y;

printf("Enter year: ");

scanf("%d",&y);

if(y % 4 == 0)

{
//Nested if else

Chapter 3 Control Structures

10 | P a g e

if(y % 100 == 0)

{
if (y % 400 == 0)

printf("%d is a Leap Year", y);

else
printf("%d is not a Leap Year", y);

}

else
printf("%d is a Leap Year", y);

}
else

printf("%d is not a Leap Year", y);

return 0;

}

Output:
Enter year: 1991

1991 is not a Leap Year

write a program to check whether the string is palindrome or not

#include <stdio.h>

#include <string.h>

int main()

{

char a[100], b[100];

printf("Enter a string to check if it is a palindrome\n");

gets(a);

strcpy(b, a); // Copying input string

strrev(b); // Reversing the string

if (strcmp(a, b) == 0) // Comparing input string with the reverse string

printf("The string is a palindrome.\n");
else

printf("The string isn't a palindrome.\n");

return 0;

}

C program for palindrome without using string functions
#include <stdio.h>

int main()

Chapter 3 Control Structures

11 | P a g e

{

char text[100];

int begin, middle, end, length = 0;

gets(text);

while (text[length] != '\0')

length++;

end = length - 1;

middle = length/2;

for (begin = 0; begin < middle; begin++)
{

if (text[begin] != text[end])

{

printf("Not a palindrome.\n");

break;
}

end--;

}

if (begin == middle)

printf("Palindrome.\n");

return 0;

}

C program to find the largest of three numbers using Conditional Operator

#include<stdio.h>

int main()

{

int x, y, z, large;
clrscr();

printf(" Enter any three integer numbers for x, y, z : ") ;
scanf("%d %d %d", &x, &y, &z) ;

large = x > y ? (x > z ? x : z) : (y > z ? y : z) ;

printf("\n\n Largest or biggest or greatest or maximum among 3 numbers using
Conditional ternary Operator : %d", large) ;

getch();

return 0;
}

Sample Output:

Chapter 3 Control Structures

12 | P a g e

Enter any three integer numbers for x, y, z : 536 234 782

Largest or biggest or greatest or maximum among 3 numbers using Conditional ternary

Operator : 782

C program to check whether a character is vowel or consonant

#include <stdio.h>

int main()

{

char ch;

printf("Enter a character\n");

scanf("%c", &ch);

// Checking both lower and upper case, || is the OR operator

if (ch == 'a' || ch == 'A' || ch == 'e' || ch == 'E' || ch == 'i' || ch == 'I' || ch =='o' || ch=='O' || ch

== 'u' || ch == 'U')

printf("%c is a vowel.\n", ch);
else

printf("%c isn't a vowel.\n", ch);

return 0;

}

C program to print day of week name using switch case

/**
* C program to print day of week using switch case

*/

#include <stdio.h>

int main()

{

int week;

/* Input week number from user */

printf("Enter week number(1-7): ");

scanf("%d", &week);

switch(week)

Chapter 3 Control Structures

13 | P a g e

{

case 1:

printf("Monday");

break;

case 2:

printf("Tuesday");

break;

case 3:

printf("Wednesday");

break;

case 4:

printf("Thursday");

break;
case 5:

printf("Friday");

break;

case 6:

printf("Saturday");
break;

case 7:

printf("Sunday");
break;

default:

printf("Invalid input! Please enter week number between 1-7.");
}

return 0;

}

Output

Enter week number(1-7): 1

Monday

C PROGRAM FOR GRADING SCHEME USING SWITCH CASE

Write a program to find grading scheme using (switch statement):

#include<stdio.h>

#include<conio.h>

int main()

{

int marks;

clrscr();

printf("Enter the marks of the students");
scanf("%d",&marks);

marks=marks/10;
switch(marks)

Chapter 3 Control Structures

14 | P a g e

{

case 10:
case 9:

case 8:

printf("The grade is Honors");
break;

case 7:

case 6:

printf("The grade is 1st Division");

break;
case 5:

printf("The grade is 2nd Division");

break;
case 4:

printf("The grade is 3rd Division");

break;
default:

printf("Student is failed");
}

getch();

return(0);
}

OUTPUT:

Enter the marks of the student

72
The grade is 1st Division

Find triangle is equilateral, isosceles or right angled Code in C Language

#include “stdio.h”
void main()

{

int i, j;
int temp;

int sides[3];

int type;

int isRightAngled;
clrscr();

printf(“Please enter the three sides of triange\n”);

for(i = 0; i < 3; i++)

{

Chapter 3 Control Structures

15 | P a g e

scanf(“%d”, &sides[i]);

}

for(i = 0; i < 3; i++)

{
for(j = i + 1; j < 3; j++)

{

if(sides[i] > sides[j])

{

temp = sides[i];

sides[i] = sides[j];

sides[j] = temp;

}

}
}

type = 3;

isRightAngled = 0;

if(sides[2] > sides[0] + sides[1]) /*check if triangle is valid */

type = 0;

else if(sides[0] == sides[2])

type = 1;

else
{

if(sides[0] == sides[1])

type = 2;

if(sides[2] * sides[2] == sides[0] * sides[0] + sides[1] * sides[1])

isRightAngled = 1;
}

switch(type)
{

case 0:

printf(“The triangle is Invalid\n”);

break;

case 1:

printf(“The triangle is Equilateral Triangle\n”);

break;

case 2:
if(isRightAngled == 1)

printf(“The triangle is Isosceles and Right Angled Triangle\n”);
else

Chapter 3 Control Structures

16 | P a g e

printf(“The triangle is Isosceles Triangle\n”);

break;
case 3:

if(isRightAngled == 1)

printf(“The triangle is Scalene and Right Angled Triangle\n”);
else

printf(“The triangle is Scalene Triangle\n”);

break;

}
getch();

}

Print the season name of the year based on the month number

#include <stdio.h>

int main()

{

int month;

printf("Enter month: ");

scanf("%d",&month);

switch(month)
{

case 12:
case 1:

case 2:

printf(“\n Winter”);

break;

case 3:

case 4:
case 5:

printf(“\n Spring”);

break;

case 6:

case 7:
case 8:

printf(“\n Summer”);

break;
case 9:

case 10:
case 11:

Chapter 3 Control Structures

17 | P a g e

printf(“\n Autumn”);

break;

default:

printf(“\n Invalid Month number”);
break;

}

return 0;

}

C For loop

Syntax of for loop:
for (initialization; condition test; increment or decrement)

{
//Statements to be executed repeatedly

}

Flow Diagram of For loop

Step 1: First initialization happens and the counter variable gets initialized.
Step 2: In the second step the condition is checked, where the counter variable is tested for

the given condition, if the condition returns true then the C statements inside the body of for

loop gets executed, if the condition returns false then the for loop gets terminated and the

control comes out of the loop.

Chapter 3 Control Structures

18 | P a g e

Step 3: After successful execution of statements inside the body of loop, the counter variable

is incremented or decremented, depending on the operation (++ or –).

Example of For loop

#include <stdio.h>

int main()
{

int i;

for (i=1; i<=3; i++)
{

printf("%d\n", i);
}

return 0;

}
Output:

1

2
3

Design a program to print a message 10 times.

#include<stdio.h>

#include<conio.h>

void main()

{

int i;

clrscr();

for(i=0;i<10;i++)

{

printf("Welcome to C programming\n");

}

getch();
}

C – while loop

Syntax of while loop:

Flow Diagram of while loop

while (condition test)
{

//Statements to be executed repeatedly
// Increment (++) or Decrement (--) Operation

}

Chapter 3 Control Structures

19 | P a g e

Example of while loop

// Print numbers from 1 to 5

#include <stdio.h>

int main()

{
int i = 1;

while (i <= 5)

{

printf("%d\n", i);
++i;

}

return 0;

}

Output

1

2

3

4
5

Chapter 3 Control Structures

20 | P a g e

do...while loop

The do..while loop is similar to the while loop with one important difference. The body

of do...while loop is executed at least once. Only then, the test expression is evaluated.

The syntax of the do...while loop is:
do

{

// statements inside the body of the loop
}

while (testExpression);

Flowchart of do...while Loop

do..while loop

Syntax of do-while loop

do

{

//Statements

}while(condition test);

Flow diagram of do while loop

Chapter 3 Control Structures

21 | P a g e

Example of do while loop

#include <stdio.h>
int main()
{

int j=0;
do
{

printf("Value of variable j is: %d\n", j);
j++;

}while (j<=3);
return 0;

}
Output:
Value of variable j is: 0
Value of variable j is: 1
Value of variable j is: 2
Value of variable j is: 3

write a program to add numbers until user enters zero.
Program:-

#include<stdio.h>

#include<conio.h>

void main()

Chapter 3 Control Structures

22 | P a g e

{

int no,sum=0;

clrscr();

do

{

printf("\n Enter a number:");

scanf("%d",&no);

sum=sum+no;

}while(no!=0);

printf("\n Sum of entered numbers =%d",sum);

getch();

}

C – goto statement

When a goto statement is encountered in a C program, the control jumps directly to the label
mentioned in the goto stateemnt
Syntax of goto statement in C
goto label_name;
..
..
label_name: C-statements
Flow Diagram of goto

Chapter 3 Control Structures

23 | P a g e

Example of goto statement
#include <stdio.h>
int main()
{

int sum=0;
for(int i = 0; i<=10; i++){

sum = sum+i;
if(i==5){

goto addition;
}

}

addition:
printf("%d", sum);

return 0;

}
Output:
15

C – Continue statement
Syntax:

Chapter 3 Control Structures

24 | P a g e

continue;

Flow diagram of continue statement

Example: continue statement inside for loop
#include <stdio.h>
int main()
{

for (int j=0; j<=8; j++)
{

if (j==4)
{

/* The continue statement is encountered when
* the value of j is equal to 4.
*/
continue;

}

/* This print statement would not execute for the
* loop iteration where j ==4 because in that case
* this statement would be skipped.
*/

printf("%d ", j);
}
return 0;

Chapter 3 Control Structures

25 | P a g e

}
Output:
0 1 2 3 5 6 7 8

C – break statement

1. It is used to come out of the loop instantly. When a break statement is encountered inside a
loop, the control directly comes out of loop and the loop gets terminated. It is used with if
statement, whenever used inside loop.
2. This can also be used in switch case control structure. Whenever it is encountered in
switch-case block, the control comes out of the switch-case(see the example below).

Flow diagram of break statement

Syntax:
break;
Example – Use of break in a while loop
#include <stdio.h>
int main()
{

int num =0;
while(num<=100)
{

printf("value of variable num is: %d\n", num);
if (num==2)
{

break;
}
num++;

}
printf("Out of while-loop");
return 0;

}
Output:
value of variable num is: 0
value of variable num is: 1
value of variable num is: 2

https://beginnersbook.com/2014/01/c-if-statement/
https://beginnersbook.com/2014/01/c-if-statement/

Chapter 3 Control Structures

26 | P a g e

Out of while-loop

c program to find sum of digits of a number

#include <stdio.h>

int main()
{

int n, t, sum = 0, remainder;

printf("Enter an integer\n");
scanf("%d", &n);

t = n;

while (t != 0)
{

remainder = t % 10;
sum = sum + remainder;
t = t / 10;

}

printf("Sum of digits of %d = %d\n", n, sum);

return 0;
}

Write a program in C to display the multiplication table vertically from 1 to n.

#include <stdio.h>
void main()
{

int j,i,n=5;
printf("Input upto the table number starting from 1 : ");
scanf("%d",&n);
printf("Multiplication table from 1 to %d \n",n);
for(i=1;i<=10;i++)
{

for(j=1;j<=n;j++)
{
if (j<=n-1)

printf("%dx%d = %d, ",j,i,i*j);
else

printf("%dx%d = %d",j,i,i*j);

Chapter 3 Control Structures

27 | P a g e

}
printf("\n");
}

}

Fibonacci Series in C without recursion

#include<stdio.h>
int main()
{
int n1=0,n2=1,n3,i,number;
printf("Enter the number of elements:");
scanf("%d",&number);
printf("\n%d %d",n1,n2);//printing 0 and 1
for(i=2;i<number;++i)//loop starts from 2 because 0 and 1 are already printed
{
n3=n1+n2;
printf(" %d",n3);
n1=n2;
n2=n3;

}
return 0;

}

Output:

1

2 3

4 5 6

7 8 9 10

11 12 13 14 15

#include<stdio.h>

int main()

{

int i,j,k;

 k=1;

Enter the number of elements:15
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Chapter 3 Control Structures

28 | P a g e

for(i=1;i<=5;i++)

{

for(j=5;j>=1;j--)

{

if(j > i)

printf(" ");

else

printf("%d",k++);

}

printf("\n");

}

return 0; }

Chapter 4 Array And Structure

1 | P a g e

Define Array

Array is a collection of same data types.

They are declared by the given syntax:

Datatype array_name [dimensions] = {element1,element2,….,element}

The declaration form of one-dimensional array is

Data_type array_name [size];

e.g

int array[3] = {1,2,3);

Characteristics of Arrays in C

1) An array holds elements that have the same data type.

2) Array elements are stored in subsequent memory locations.

3) Two-dimensional array elements are stored row by row in subsequent memory locations.

4) Array name represents the address of the starting element.

5) Array size should be mentioned in the declaration. Array size must be a constant
expression and not a variable.

Declaration of C Array

We can declare an array in the c language in the following way.

data_type array_name[array_size];

Now, let us see the example to declare the array.

int marks[5];

Here, int is the data_type, marks are the array_name, and 5 is the array_size.

Initialization of C Array

The simplest way to initialize an array is by using the index of each element. We can initialize
each element of the array by using the index. Consider the following example.

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

http://ecomputernotes.com/what-is-c/array/what-are-the-characteristics-of-arrays-in-c
http://ecomputernotes.com/java/data-type-variable-and-array/explain-data-types-in-java

Chapter 4 Array And Structure

2 | P a g e

Array example

#include<stdio.h>

int main(){

int i=0;

int marks[5];//declaration of array

marks[0]=80;//initialization of array

marks[1]=60;

marks[2]=70;

marks[3]=85;

marks[4]=75;

//traversal of array

for(i=0;i<5;i++){

printf("%d \n",marks[i]);

}//end of for loop

return 0;

}

Output

80

60

70

85

75

Chapter 4 Array And Structure

3 | P a g e

Array: Declaration with Initialization

We can initialize the c array at the time of declaration. Let's see the code.

int marks[5]={20,30,40,50,60};

In such case, there is no requirement to define the size. So it may also be written as the

following code.

int marks[]={20,30,40,50,60};

Let's see the C program to declare and initialize the array in C.

#include<stdio.h>

int main(){

int i=0;

int marks[5]={20,30,40,50,60};//declaration and initialization of array

//traversal of array

for(i=0;i<5;i++){

printf("%d \n",marks[i]);

}

return 0;

}

Output

20

30

40

50

60

Array Example: Sorting an array

In the following program, we are using bubble sort method to sort the array in ascending
order.

#include<stdio.h>

void main ()

{

int i, j,temp;

int a[10] = { 10, 9, 7, 101, 23, 44, 12, 78, 34, 23};

Chapter 4 Array And Structure

4 | P a g e

for(i = 0; i<10; i++)

{

for(j = i+1; j<10; j++)

{

if(a[j] > a[i])

{

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

}

}

printf("Printing Sorted Element List ...\n");

for(i = 0; i<10; i++)

{

printf("%d\n",a[i]);

}

}

Two Dimensional Array in C

The two-dimensional array can be defined as an array of arrays. The 2D array is organized as

matrices which can be represented as the collection of rows and columns. However, 2D arrays

are created to implement a relational database lookalike data structure. It provides ease of

holding the bulk of data at once which can be passed to any number of functions wherever

required.

Declaration of two dimensional Array in C

The syntax to declare the 2D array is given below.

data_type array_name[rows][columns];

Consider the following example.

int twodimen[4][3];

Here, 4 is the number of rows, and 3 is the number of columns.

Chapter 4 Array And Structure

5 | P a g e

Initialization of 2D Array in C

In the 1D array, we don't need to specify the size of the array if the declaration and

initialization are being done simultaneously. However, this will not work with 2D arrays. We

will have to define at least the second dimension of the array. The two-dimensional array can

be declared and defined in the following way.

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

Two-dimensional array example in C

#include<stdio.h>

int main(){

int i=0,j=0;

int arr[4][3]={{1,2,3},{2,3,4},{3,4,5},{4,5,6}};

//traversing 2D array

for(i=0;i<4;i++){

for(j=0;j<3;j++){

printf("arr[%d] [%d] = %d \n",i,j,arr[i][j]);

}//end of j

}//end of i

return 0;

}

Output

arr[0][0] = 1

arr[0][1] = 2

arr[0][2] = 3

arr[1][0] = 2

arr[1][1] = 3

arr[1][2] = 4

arr[2][0] = 3

arr[2][1] = 4

arr[2][2] = 5

arr[3][0] = 4

arr[3][1] = 5

arr[3][2] = 6

Chapter 4 Array And Structure

6 | P a g e

2D array example: Storing elements in a matrix and printing it.

#include <stdio.h>

void main ()

{

int arr[3][3],i,j;

for (i=0;i<3;i++)

{

for (j=0;j<3;j++)

{

printf("Enter a[%d][%d]: ",i,j);

scanf("%d",&arr[i][j]);

}

}

printf("\n printing the elements.... \n");

for(i=0;i<3;i++)

{

printf("\n");

for (j=0;j<3;j++)

{

printf("%d\t",arr[i][j]);

}

}

}

Output

Enter a[0][0]: 56

Enter a[0][1]: 10

Enter a[0][2]: 30

Enter a[1][0]: 34

Enter a[1][1]: 21

Enter a[1][2]: 34

Chapter 4 Array And Structure

7 | P a g e

Enter a[2][0]: 45

Enter a[2][1]: 56

Enter a[2][2]: 78

printing the elements

56 10 30

34 21 34

45 56 78

Addition of two matrix in C

#include <stdio.h>

int main()

{

int m, n, c, d, first[10][10], second[10][10], sum[10][10];

printf("Enter the number of rows and columns of matrix\n");

scanf("%d%d", &m, &n);

printf("Enter the elements of first matrix\n");

for (c = 0; c < m; c++)

for (d = 0; d < n; d++)

scanf("%d", &first[c][d]);

printf("Enter the elements of second matrix\n");

for (c = 0; c < m; c++)

for (d = 0 ; d < n; d++)

scanf("%d", &second[c][d]);

Chapter 4 Array And Structure

8 | P a g e

printf("Sum of entered matrices:-\n");

for (c = 0; c < m; c++) {

for (d = 0 ; d < n; d++) {

sum[c][d] = first[c][d] + second[c][d];

printf("%d\t", sum[c][d]);

}

printf("\n");

}

return 0;

}

Chapter 4 Array And Structure

9 | P a g e

Chapter 4 Array And Structure

10 | P a g e

Following operations can be performed on arrays:

1. Traversing

2. Searching

3. Insertion

4. Deletion

5. Sorting

6. Merging

1. Traversing: It is used to access each data item exactly once so that it can be processed.
E.g.

We have linear array A as below:

1 2 3 4 5

10 20 30 40 50

Here we will start from beginning and will go till last element and during this process we will

access value of each element exactly once as below:

A [1] = 10

A [2] = 20
A [3] = 30

A [4] = 40

A [5] = 50

2. Searching: It is used to find out the location of the data item if it exists in the given collection of

data items.

E.g.

We have linear array A as below:

1 2 3 4 5

15 50 35 20 25

Suppose item to be searched is 20. We will start from beginning and will compare 20 with each

element. This process will continue until element is found or array is finished. Here:

1) Compare 20 with 15

20 # 15, go to next element.

2) Compare 20 with 50

Chapter 4 Array And Structure

11 | P a g e

20 # 50, go to next element.

3) Compare 20 with 35
20 #35, go to next element.

4) Compare 20 with 20
20 = 20, so 20 is found and its location is 4.

3. Insertion: It is used to add a new data item in the given collection of data items.

E.g.

We have linear array A as below:

1 2 3 4 5

10 20 50 30 15

New element to be inserted is 100 and location for insertion is 3. So shift the elements from 5th

location to 3rd location downwards by 1 place. And then insert 100 at 3rd location. It is shown

below:

4. Deletion: It is used to delete an existing data item from the given collection of data items.
E.g.

We have linear array A as below:

1 2 3 4 5

10 20 50 40 25 60

Chapter 4 Array And Structure

12 | P a g e

The element to be deleted is 50 which is at 3rd location. So shift the elements from 4th to 6th

location upwards by 1 place. It is shown below:

After deletion the array will be:

1 2 3 4 5 6

10 20 40 25 60

5. Sorting: It is used to arrange the data items in some order i.e. in ascending or descending order

in case of numerical data and in dictionary order in case of alphanumeric data.

E.g.

We have linear array A as below:

1 2 3 4 5

10 50 40 20 30

After arranging the elements in increasing order by using a sorting technique, the array will be:

1 2 3 4 5

10 20 30 40 50

6. Merging: It is used to combine the data items of two sorted files into single file in the sorted form

We have sorted linear array A as below:

1 2 3 4 5 6

Chapter 4 Array And Structure

13 | P a g e

And sorted linear array B as below:

After merging merged array C is as below:

10 40 50 80 95 100

1 2 3 4

20 35 45 90

1 2 3 4 5 6 7 8 9 10

10 20 35 40 45 50 80 90 95 100

Character array or String

A string is a collection of characters, stored in an array followed by null ('\0') character. Null
character represents the end of string.

Address of first element is random, address of next element depend upon the type of array. Here,
the type is character and character takes one byte in memory, therefore every next address will
increment by one.
Index of array will always starts with zero.

Declaration of String or Character array

Declaration of array means creating sequential bolcks of memory to hold fixed number of values.

Syntax for string declaration :

Chapter 4 Array And Structure

14 | P a g e

Example for string declaration :

In the above example we have declared a character array which can hold twenty-five characters at
a time.

Initialization of String

Initialization of string means assigning value to declared character array or string.
Examples 1 :Using sequence of characters.

In the above example, we are declaring and initializing a string at same time. When we declare and
initialize a string at same time, giving the size of array is optional and it is programmer's job to
specify the null character at the end to terminate the string.

Example 2 : Using assignment operator

In this approch, programmer doesn't need to provide null character, compiler will automatically
add null character at the end of string.

Input string using getche() function

The getche() read characters from console (output window) one by one and put these characters
into string using loop.

Examples for input string with getche() function

char String-name[size of String];

char String [25]; //Statement 1

char String [] = {'H','e','l','l','o',' ','W','o','r','l','d','\0'};

char String [] = "Hello World";

#include<stdio.h>

void main()
{

char String [50];
char ch;
int i;

printf("\n\n\tEnter your name : ");
for(i=0;i<50;i++)
{

ch = getche(); //Statement 1

if(ch==13)
break;

//Statement 2

String [i] = ch;
}

Chapter 4 Array And Structure

15 | P a g e

In the above example, A for loop will execute upto 50 time and getche() which inside for loop will
read single character from console and put the character into ch. If user press the enter key,
condition given in statement 2 will satisfy and terminate the loop otherwise every character will
assign to String. Statement 4 is assigning null character to String.

The scanf() can read the entire word at a time. The format specifier for a string is "%s". The scanf()
ignores the any occurrence of leading whitespace characters and terminate the string at the first
occurrence of whitespace after any input.

Examples for input string with scanf() function

In the output of above example there is five leading whitespaces in the input which is ignored by
the compiler.

String [i] = '\0'; //Statement 3

printf("\n\n\tHello, ");
for(i=0; String [i]!='\0';i++)
printf("%c", String [i]);

}

Output :

Enter your name : Kumar
Hello Kumar

#include<stdio.h>

void main()

{

char String [50];

printf("\n\n\tEnter your name : ");

scanf("%s", String);

printf("\n\n\tHello %s", String);

}

Output :

Enter your name : Kumar Wadhwa

Hello Kumar

Chapter 4 Array And Structure

16 | P a g e

Input string using gets() function

The gets() can read the entire line at a time and the string will not terminate until user press the
enter key. The gets() will put all the leading and trailing whitespaces into str.

Examples for input string with gets() function

Differences between Strings and Character Arrays:
STRINGS CHARACTER ARRAYS

String refers to a sequence of characters

represented as a single data type.

Character Array is a sequential collection

of data type char.

Strings are immutable. Character Arrays are mutable.

Built in functions like substring(), charAt() etc

can be used on Strings.

No built in functions are provided in Java

for operations on Character Arrays.

‘+’ can be used to appended strings together to

form a new string.

‘+’ cannot be used to append two

Character Arrays.

The charAt() method can be used to access The characters in a Character Array can

#include<stdio.h>

void main()

{

char String [50];

printf("\n\n\tEnter your name : ");

gets(String);

printf("\n\n\tHello %s", String);

}

Output :

Enter your name : Kumar Wadhwa

Hello Kumar Wadhwa

Chapter 4 Array And Structure

17 | P a g e

characters at a particular index in a String. be accessed normally like in any other

language by using [].

Strings can be stored in any any manner in the

memory.

Elements in Character Array are stored

contiguously in increasing memory

locations.

All Strings are stored in the String Constant

Pool.

All Character Arrays are stored in

the Heap.

Not preferred for storing passwords in Java. Preferred for storing passwords in Java.

A String can be converted into Character Array by

using the toCharArray() method of String class.

Eg: String s = “GEEKS”;

char [] ch = s.toCharArray();

A Character Array can be converted into

String by passing it into a String

Constructor.

Eg: char[] a = {‘G’, ‘E’, ‘E’, ‘K’, ‘S’};

String A = new String(a);

C String Functions

There are many important string functions defined in "string.h" library.

No. Function Description

1) strlen(string_name) returns the length of string name.

2)
strcpy(destination,

source)

copies the contents of source string to destination

string.

3)
strcat(first_string,

second_string)

concats or joins first string with second string. The

result of the string is stored in first string.

4)
strcmp(first_string,

second_string)

compares the first string with second string. If both

strings are same, it returns 0.

5) strrev(string) returns reverse string.

6) strlwr(string) returns string characters in lowercase.

7) strupr(string) returns string characters in uppercase.

https://www.geeksforgeeks.org/java-string-tochararray-example/
https://www.javatpoint.com/c-strlen
https://www.javatpoint.com/c-strcpy
https://www.javatpoint.com/c-strcpy
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcat
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strcmp
https://www.javatpoint.com/c-strrev
https://www.javatpoint.com/c-strlwr
https://www.javatpoint.com/c-strupr

Chapter 4 Array And Structure

18 | P a g e

Function C String Length: strlen() function

Description The strlen() function returns the length of the given string. It doesn't count
null character '\0'.

Input #include<stdio.h>

#include <string.h>

int main(){

char ch[20]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

printf("Length of string is: %d",strlen(ch));

return 0;
}

Output Length of string is: 10

Function C Copy String: strcpy()

Description The strcpy(destination, source) function copies the source string in
destination.

Input #include<stdio.h>

#include <string.h>

int main(){

char ch[20]={'j', 'a', 'v', 'a', 't', 'p', 'o', 'i', 'n', 't', '\0'};

char ch2[20];

strcpy(ch2,ch);

printf("Value of second string is: %s",ch2);

return 0;
}

Output Value of second string is: javatpoint

Function C String Concatenation: strcat()

Description The strcat(first_string, second_string) function concatenates two strings and
result is returned to first_string.

Input #include<stdio.h>

#include <string.h>

int main(){

char ch[10]={'h', 'e', 'l', 'l', 'o', '\0'};

char ch2[10]={'c', '\0'};

strcat(ch,ch2);

printf("Value of first string is: %s",ch);

return 0;

Output Value of first string is: helloc

Chapter 4 Array And Structure

19 | P a g e

Function C Compare String: strcmp()

Description The strcmp(first_string, second_string) function compares two string and
returns 0 if both strings are equal.

Here, we are using gets() function which reads string from the console.

Input #include<stdio.h>

#include <string.h>

int main(){

char str1[20],str2[20];

printf("Enter 1st string: ");

gets(str1);//reads string from console

printf("Enter 2nd string: ");

gets(str2);

if(strcmp(str1,str2)==0)

printf("Strings are equal");

else

printf("Strings are not equal");

return 0;

}

Output Enter 1st string: hello
Enter 2nd string: hello
Strings are equal

Function C Reverse String: strrev()

Description The strrev(string) function returns reverse of the given string. Let's see a
simple example of strrev() function.

Input #include<stdio.h>

#include <string.h>

int main(){

char str[20];

printf("Enter string: ");

gets(str);//reads string from console

printf("String is: %s",str);

printf("\nReverse String is: %s",strrev(str));
return 0;

}

Output Enter string: javatpoint
String is: javatpoint
Reverse String is: tnioptavaj

Chapter 4 Array And Structure

20 | P a g e

Function C String Lowercase: strlwr()

Description The strlwr(string) function returns string characters in lowercase. Let's see
a simple example of strlwr() function.

Input #include<stdio.h>

#include <string.h>

int main(){

char str[20];

printf("Enter string: ");

gets(str);//reads string from console

printf("String is: %s",str);

printf("\nLower String is: %s",strlwr(str));

return 0;

}

Output Enter string: JAVATpoint
String is: JAVATpoint
Lower String is: javatpoint

Function C String Uppercase: strupr()

Description The strupr(string) function returns string characters in uppercase. Let's see
a simple example of strupr() function.

Input #include<stdio.h>

#include <string.h>

int main(){

char str[20];

printf("Enter string: ");

gets(str);//reads string from console

printf("String is: %s",str);

printf("\nUpper String is: %s",strupr(str));

return 0;
}

Output Enter string: javatpoint
String is: javatpoint
Upper String is: JAVATPOINT

C Program to Find the Length of a String without using the Built-in Function

#include<stdio.h>

#include<conio.h>

void main(){

char str[50];

int i, len=0;

clrscr();

Chapter 4 Array And Structure

21 | P a g e

printf("Enter a string");

scanf("%s",&str);

for(i=0; str[i]!='\0'; i++){

len++;

}

printf("The length of string is %d",len);

getch();

}

C Program to Compare Two Strings Without Using Library Function

#include<stdio.h>

int main() {

char str1[30], str2[30];

int i;

printf("\nEnter two strings :");

gets(str1);

gets(str2);

i = 0;

while (str1[i] == str2[i] && str1[i] != '\0')

i++;

if (str1[i] > str2[i])

printf("str1 > str2");

else if (str1[i] < str2[i])

printf("str1 < str2");

else

printf("str1 = str2");

return (0);

}

Chapter 4 Array And Structure

22 | P a g e

C Program to Copy One String into Other Without Using Library Function.

#include<stdio.h>

int main() {

char s1[100], s2[100];

int i;

printf("\nEnter the string :");

gets(s1);

i = 0;

while (s1[i] != '\0') {

s2[i] = s1[i];

i++;

}

s2[i] = '\0';

printf("\nCopied String is %s ", s2);

return (0);

}

Output:

Enter the string : c4learn.com

Copied String is c4learn.com

Chapter 4 Array And Structure

23 | P a g e

C Program to Concat Two Strings without Using Library Function

#include<stdio.h>

#include<string.h>

void concat(char[], char[]);

int main() {

char s1[50], s2[30];

printf("\nEnter String 1 :");

gets(s1);

printf("\nEnter String 2 :");

gets(s2);

concat(s1, s2);

printf("nConcated string is :%s", s1);

return (0);

}

void concat(char s1[], char s2[]) {

int i, j;

i = strlen(s1);

for (j = 0; s2[j] != '\0'; i++, j++) {

s1[i] = s2[j];

}

s1[i] = '\0';

}

Enter String 1 : Pritesh

Enter String 2 : Taral

Concated string is : PriteshTaral

Chapter 4 Array And Structure

24 | P a g e

Reverse String Without Using Library Function [Strrev]

#include<stdio.h>

#include<string.h>

int main() {

char str[100], temp;

int i, j = 0;

printf("\nEnter the string :");

gets(str);

i = 0;

j = strlen(str) - 1;

while (i < j) {

temp = str[i];

str[i] = str[j];

str[j] = temp;

i++;

j--;

}

printf("\nReverse string is :%s", str);

return (0);

}

Output :

Enter the string : Pritesh

Reverse string is : hsetirP

Chapter 4 Array And Structure

25 | P a g e

What is Structure

Structure in c is a user-defined data type that enables us to store the collection of different

data types. Each element of a structure is called a member. Structures ca; simulate the use of

classes and templates as it can store various information

The ,struct keyword is used to define the structure. Let's see the syntax to define the

structure in c.

struct structure_name

{

data_type member1;

data_type member2;

.

.

data_type memeberN;

};

Let's see the example to define a structure for an entity employee in c.

struct employee

{ int id;

char name[20];

float salary;

};

Declaring structure variable

We can declare a variable for the structure so that we can access the member of the structure
easily. There are two ways to declare structure variable:

1. By struct keyword within main() function

2. By declaring a variable at the time of defining the structure.

1st way:

Let's see the example to declare the structure variable by struct keyword. It should be

declared within the main function.

struct employee

{ int id;

char name[50];

float salary;

Chapter 4 Array And Structure

26 | P a g e

};

Now write given code inside the main() function.

struct employee e1, e2;

The variables e1 and e2 can be used to access the values stored in the structure. Here, e1 and

e2 can be treated in the same way as the objects in C++ and Java.

2nd way:

Let's see another way to declare variable at the time of defining the structure.

struct employee

{ int id;

char name[50];

float salary;

}e1,e2;

Accessing members of the structure

There are two ways to access structure members:

1. By . (member or dot operator)

2. By -> (structure pointer operator)

Let's see the code to access the id member of p1 variable by . (member) operator.

1. p1.id

C Structure example

Let's see a simple example of structure in C language.

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

char name[50];

}e1; //declaring e1 variable for structure

int main()

{

//store first employee information

e1.id=101;

Chapter 4 Array And Structure

27 | P a g e

strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

//printing first employee information

printf("employee 1 id : %d\n", e1.id);

printf("employee 1 name : %s\n", e1.name);

return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

Let's see another example of the structure in C language to store many employees
information.

#include<stdio.h>

#include <string.h>

struct employee

{ int id;

char name[50];

float salary;

}e1,e2; //declaring e1 and e2 variables for structure

int main()

{

//store first employee information

e1.id=101;

strcpy(e1.name, "Sonoo Jaiswal");//copying string into char array

e1.salary=56000;

//store second employee information

e2.id=102;

strcpy(e2.name, "James Bond");

e2.salary=126000;

//printing first employee information

Chapter 4 Array And Structure

28 | P a g e

printf("employee 1 id : %d\n", e1.id);

printf("employee 1 name : %s\n", e1.name);

printf("employee 1 salary : %f\n", e1.salary);

//printing second employee information

printf("employee 2 id : %d\n", e2.id);

printf("employee 2 name : %s\n", e2.name);

printf("employee 2 salary : %f\n", e2.salary);

return 0;

}

Output:

employee 1 id : 101

employee 1 name : Sonoo Jaiswal

employee 1 salary : 56000.000000

employee 2 id : 102

employee 2 name : James Bond

employee 2 salary : 126000.000000

Give a method to create, declare and initialize structure also develop a program to

demonstrate nested structure.

Declaration of structure:-

struct structure_name

{

data_type member 1;
data_type member 2;

.

.

.

data_type member n;

} structure variable 1, structure variable 2,..., structure variable n;

Example:-

struct student

{

Chapter 4 Array And Structure

29 | P a g e

int rollno;

char name[10];

}s1;

Initialization:-

struct student s={1,"abc"};

structure variable contains two members as rollno and name. the above example initializes
rollno to 1 and name to "abc".

Program:-

#include<stdio.h>

#include<conio.h>

struct college

{
int collegeid;

char collegename[20];

};
struct student

{
int rollno;

char studentname[10];

struct college c;
};

void main()

{

struct student s={1,"ABC",123,"Polytechnic"};

clrscr();

printf("\n Roll number=%d",s.rollno);

printf("\n Student Name=%s",s.studentname);

printf("\n College id=%d",s.c.collegeid);

printf("\n College name=%s",s.c.collegename);

getch();

}

Develop a program using structure to print data of three students having data

members name, class, percentage.

#include<stdio.h>

#include<conio.h>

void main() {

struct student

{

char name[20];
char c[20];

int per;

Chapter 4 Array And Structure

30 | P a g e

} s[3];

int i;
clrscr();

for(i=0;i<3;i++)

{

printf("Enter name, class, percentage");
scanf("%s%s%d",&s[i].name,&s[i].c,&s[i].per);

}

for(i=0;i<3;i++)

{
printf("%s %s %d\n",s[i].name,s[i].c,s[i].per);

}

getch();
}

Write a program to declare structure employee having data member name, age, street

and city. Accept data for two employees and display it.

#include<stdio.h>
#include<conio.h>

struct employee

{

char name[10],street[10],city[10];
int age;

};

void main()

{

int i;

struct employee e[2];

clrscr();

for(i=0;i<2;i++)
{

printf("\n Enter name:");

scanf("%s",&e[i].name);

printf("\n Enter age:");

scanf("%d",&e[i].age);

printf("\n Enter street:");

scanf("%s",&e[i].street);

printf("\n Enter city:");

scanf("%s",&e[i].city);

}

for(i=0;i<2;i++)
{

printf("\n Name=%s",e[i].name);

printf("\n Age=%d",e[i].age);

printf("\n Street=%s",e[i].street);

printf("\n City=%s",e[i].city);

Chapter 4 Array And Structure

31 | P a g e

}

getch();
}

C – Typedef

 Typedef is a keyword that is used to give a new symbolic name for the existing name in a C
program. This is same like defining alias for the commands.

 Consider the below structure.

struct student

{
int mark [2];

char name [10];

float average;

}

 Variable for the above structure can be declared in two ways.

1st way :

struct student record; /* for normal variable */

struct student *record; /* for pointer variable */

2nd way :

typedef struct student status;

 When we use “typedef” keyword before struct <tag_name> like above, after that we
can simply use type definition “status” in the C program to declare structure variable.

 Now, structure variable declaration will be, “status record”.

 This is equal to “struct student record”. Type definition for “struct student” is
status. i.e. status = “struct student”

AN ALTERNATIVE WAY FOR STRUCTURE DECLARATION USING TYPEDEF IN C:

typedef struct student

{
int mark [2];

char name [10];

float average;
} status;

// Structure using typedef:

Chapter 4 Array And Structure

32 | P a g e

#include <stdio.h>

#include <string.h>

typedef struct student

{

int id;

char name[20];

float percentage;

} status;

int main()

{

status record;

record.id=1;

strcpy(record.name, "Raju");

record.percentage = 86.5;

printf(" Id is: %d \n", record.id);

printf(" Name is: %s \n", record.name);

printf(" Percentage is: %f \n", record.percentage);

return 0;

}

OUTPUT:

ANOTHER EXAMPLE PROGRAM FOR C TYPEDEF:

#include <stdio.h>

#include <limits.h>

Id is: 1

Name is: Raju
Percentage is: 86.500000

Chapter 4 Array And Structure

33 | P a g e

int main()

{

typedef long long int LLI;

printf("Storage size for long long int data " \

"type : %ld \n", sizeof(LLI));

return 0;

}

OUTPUT:

C enums

Enumerated Type Declaration

When you define an enum type, the blueprint for the variable is created. Here's how you can
create variables of enum types.

enum boolean {false, true};

enum boolean check; // declaring an enum variable

Here, a variable check of the type enum boolean is created.

You can also declare enum variables like this.

enum boolean {false, true} check;

Storage size for long long int data type : 8

Chapter 4 Array And Structure

34 | P a g e

#include <stdio.h>

enum week {Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday};

int main()

{

// creating today variable of enum week type
enum week today;

today = Wednesday;

printf("Day %d",today+1);

return 0;

}

Output

Day 4

C Program To Search An Element In An Array Using Standard Method

#include <conio.h>

int main()

{
int a[10000],i,n,key;

printf("Enter size of the array : ");
scanf("%d", &n);

printf("Enter elements in array : ");

for(i=0; i<n; i++)
{

scanf("%d",&a[i]);
}

printf("Enter the key : ");

scanf("%d", &key);

for(i=0; i<n; i++)

{
if(a[i]==key)

{
printf("element found ");

return 0;

}

}

printf("element not found");

}

Chapter 4 Array And Structure

35 | P a g e

Enter size of the array: 5

Enter elements in array: 4

6

2

1

3

Enter the key: 2

element found

Write a program to declare the structure student, having data members as rollno, name

and percentage. Accept data for five students and display the same.

#include <stdio.h>

struct student
{

char name[50];

int roll;

float marks;

} s[10];

int main()

{

int i;

printf("Enter information of students:\n");

// storing information

for(i=0; i<10; ++i)

{

s[i].roll = i+1;

printf("\nFor roll number%d,\n",s[i].roll);

printf("Enter name: ");

scanf("%s",s[i].name);

printf("Enter marks: ");

scanf("%f",&s[i].marks);

printf("\n");

}

printf("Displaying Information:\n\n");

// displaying information
for(i=0; i<10; ++i)

Chapter 4 Array And Structure

36 | P a g e

{

printf("\nRoll number: %d\n",i+1);
printf("Name: ");

puts(s[i].name);

printf("Marks: %.1f",s[i].marks);
printf("\n");

}
return 0;

}

Output

Enter information of students:

For roll number1,

Enter name: Tom

Enter marks: 98

For roll number2,

Enter name: Jerry

Enter marks: 89

.
Displaying Information:

Roll number: 1

Name: Tom
Marks: 98

.

Chapter 5 Functions

1 | P a g e

Concept and need of function

WHAT IS C FUNCTION?

A large C program is divided into basic building blocks called C function. C function contains

set of instructions enclosed by “{ }” which performs specific operation in a C program.

Actually, Collection of these functions creates a C program.

#include<stdio.h>

/*Function prototypes*/

myfunc();

main()

{

myfunc();

}

/*Function Defination*/

myfunc()

{

printf("Hello, this is a test\n");

}

Need of functions in C

There are the following advantages of C functions.

o By using functions, we can avoid rewriting same logic/code again and again in a
program.

o We can call C functions any number of times in a program and from any place in a
program.

o We can track a large C program easily when it is divided into multiple functions.

o Reusability is the main achievement of C functions.

o However, Function calling is always a overhead in a C program.

Chapter 5 Functions

2 | P a g e

Library Functions: Math functions

C – Library functions

 Library functions in C language are inbuilt functions which are grouped together and

placed in a common place called library.

 Each library function in C performs specific operation.

 We can make use of these library functions to get the pre-defined output instead of

writing our own code to get those outputs.

 These library functions are created by the persons who designed and created C

compilers.

 All C standard library functions are declared in many header files which are saved as

file_name.h.

 Actually, function declaration, definition for macros are given in all header files.

 We are including these header files in our C program using “#include<file_name.h>”
command to make use of the functions those are declared in the header files.

 When we include header files in our C program using “#include<filename.h>”

command, all C code of the header files are included in C program. Then, this C

program is compiled by compiler and executed.

C Math Functions

There are various methods in math.h header file. The commonly used functions of math.h
header file are given below.

No. Function Description

1) ceil(number) rounds up the given number. It returns the integer value

which is greater than or equal to given number.

2) floor(number) rounds down the given number. It returns the integer

value which is less than or equal to given number.

3) sqrt(number) returns the square root of given number.

4) pow(base,

exponent)

returns the power of given number.

5) abs(number) returns the absolute value of given number.

Chapter 5 Functions

3 | P a g e

C Math Example

Let's see a simple example of math functions found in math.h header file

#include<stdio.h>

#include <math.h>

int main(){

printf("\n%f",ceil(3.6));

printf("\n%f",ceil(3.3));

printf("\n%f",floor(3.6));

printf("\n%f",floor(3.2));

printf("\n%f",sqrt(16));

printf("\n%f",sqrt(7));

printf("\n%f",pow(2,4));

printf("\n%f",pow(3,3));

printf("\n%d",abs(-12));

return 0;

}

Output:

4.000000

4.000000

3.000000

3.000000

4.000000

2.645751

16.000000

27.000000

12

Chapter 5 Functions

4 | P a g e

Explain any four library functions under conio.h header file.

clrscr() -This function is used to clear the output screen.

getch() -It reads character from keyboard

getche()-It reads character from keyboard and echoes to o/p screen

putch - Writes a character directly to the console.

textcolor()-This function is used to change the text color

textbackground()-This function is used to change text background

C User-defined functions

C allows you to define functions according to your need. These functions are known as user-

defined functions. For example:

Example: User-defined function

Here is an example to add two integers. To perform this task, we have created an user-defined

addNumbers().

#include <stdio.h>

int addNumbers(int a, int b); // function prototype

int main()

{

int n1,n2,sum;

printf("Enters two numbers: ");

scanf("%d %d",&n1,&n2);

sum = addNumbers(n1, n2); // function call

printf("sum = %d",sum);

return 0;

}

int addNumbers(int a, int b) // function definition

{

int result;

result = a+b;

return result; // return statement

Chapter 5 Functions

5 | P a g e

}

Function declaration or prototype – This informs compiler about the function name, function

parameters and return value’s data type.

Function call – This calls the actual function

Function definition – This contains all the statements to be executed.

C functions aspects syntax

function definition

Return_type function_name (arguments

list)

{ Body of function; }

function call function_name (arguments list);

function declaration

return_type function_name (argument

list);

SIMPLE EXAMPLE PROGRAM FOR C FUNCTION:

 As you know, functions should be declared and defined before calling in a C program.

 In the below program, function “square” is called from main function.

 The value of “m” is passed as argument to the function “square”. This value is
multiplied by itself in this function and multiplied value “p” is returned to main

function from function “square”.

#include<stdio.h>

// function prototype, also called function declaration

float square (float x);

int main()

{

float m, n ;

printf ("\nEnter some number for finding square \n");

scanf ("%f", &m) ;

// function call

n = square (m) ;

printf ("\nSquare of the given number %f is %f",m,n);

}

C FUNCTION DECLARATION, FUNCTION CALL AND FUNCTION DEFINITION:

There are 3 aspects in each C function. They are,

Chapter 5 Functions

6 | P a g e

float square (float x) // function definition

{

float p ;

p = x * x ;

return (p) ;

}

Scope of Variable in C

The scope of a variable decides the portion of a program in which the variable can be
accessed. The scope of the variable is defined as follows...

The variable scope defines the visibility of variable in the program. Scope of a variable depends
on the position of variable declaration.

In C programming language, a variable can be declared in three different positions and they are
as follows...

 Before the function definition (Global Declaration)
 Inside the function or block (Local Declaration)
 In the function definition parameters (Formal Parameters)

Before the function definition (Global Declaration)

Declaring a variable before the function definition (outside the function definition) is called
global declaration. That means the global variable can be accessed any where in the program
after its declaration. The global variable scope is said to be file scope.

Example Program

#include<stdio.h>

#include<conio.h>

int num1, num2 ;

void main(){

void addition() ;

void subtraction() ;

void multiplication() ;

clrscr() ;

Scope of a variable is the portion of the program where a defined variable can be
accessed.

Chapter 5 Functions

7 | P a g e

num1 = 10 ;

num2 = 20 ;

printf("num1 = %d, num2 = %d", num1, num2) ;

addition() ;

subtraction() ;

multiplication() ;

getch() ;

}

void addition()

{

int result ;

result = num1 + num2 ;

printf("\naddition = %d", result) ;

}

void subtraction()

{

int result ;

result = num1 - num2 ;

printf("\nsubtraction = %d", result) ;

}

void multiplication()

{

int result ;

result = num1 * num2 ;

printf("\nmultiplication = %d", result) ;

}

Output:

Chapter 5 Functions

8 | P a g e

In the above example program, the variables num1 and num2 are declared as global variables.
They are declared before the main() function. So, they can be accessed by function main() and
other functions that are defined after main(). In the above example, the functions main(),
addition(), subtraction() and multiplication() can access the variables num1 and num2.

Inside the function or block (Local Declaration)

Declaring a variable inside the function or block is called local declaration. The variable
declared using local declaration is called local variable. The local variable can be accessed only
by the function or block in which it is declared.

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

void addition() ;

int num1, num2 ;

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf("num1 = %d, num2 = %d", num1, num2) ;

addition() ;

getch() ;

}

void addition()

{

int sumResult ;

sumResult = num1 + num2 ;

printf("\naddition = %d", sumResult) ;

}

Output:

Chapter 5 Functions

9 | P a g e

The above example program shows an error because, the variables num1 and num2 are
declared inside the function main(). So, they can be used only inside main() function and not
in addition() function.

In the function definition parameters (Formal Parameters)

The variables declared in function definition as parameters have a local variable scope. These
variables behave like local variables in the function. They can be accessed inside the function
but not outside the function.

 Example Program

#include<stdio.h>

#include<conio.h>

void main(){

void addition(int, int) ;

int num1, num2 ;

clrscr() ;

num1 = 10 ;

num2 = 20 ;

addition(num1, num2) ;

getch() ;

}

void addition(int a, int b)

{

int sumResult ;

sumResult = a + b ;

printf("\naddition = %d", sumResult) ;

}

Output:

In the above example program, the variables a and b are declared in function definition as
parameters. So, they can be used only inside the addition() function.

Chapter 5 Functions

10 | P a g e

Parameter Passing in C

When a function gets executed in the program, the execution control is transferred from calling-

function to called function and executes function definition, and finally comes back to the calling

function. When the execution control is transferred from calling-function to called- function it

may carry one or number of data values. These data values are called as parameters.

In C, there are two types of parameters and they are as follows...

 Actual Parameters

 Formal Parameters

In C Programming Language, there are two methods to pass parameters from calling function
to called function and they are as follows...

Call by Value

Call by Reference

Call by Value

In call by value parameter passing method, the copy of actual parameter values are copied to

formal parameters and these formal parameters are used in called function. The changes

made on the formal parameters does not effect the values of actual parameters. That means,

after the execution control comes back to the calling function, the actual parameter values

remains same. For example consider the following program...

#include<stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void swap(int,int) ; // function declaration

clrscr() ;

num1 = 10 ;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2) ;

Parameters are the data values that are passed from calling function to called function.

Chapter 5 Functions

11 | P a g e

swap(num1, num2) ; // calling function

printf("\nAfter swap: num1 = %d\nnum2 = %d", num1, num2);

getch() ;

}

void swap(int a, int b) // called function

{

int temp ;

temp = a ;

a = b ;

b = temp ;

}

Output:

Call by Reference

In Call by Reference parameter passing method, the memory location address of the actual

parameters is copied to formal parameters. This address is used to access the memory

locations of the actual parameters in called function. In this method of parameter passing, the

formal parameters must be pointer variables.

#include<stdio.h>

#include<conio.h>

void main(){

int num1, num2 ;

void swap(int *,int *) ; // function declaration

clrscr() ;

Chapter 5 Functions

12 | P a g e

num1 = 10 ;

num2 = 20 ;

printf("\nBefore swap: num1 = %d, num2 = %d", num1, num2) ;

swap(&num1, &num2) ; // calling function

printf("\nAfter swap: num1 = %d, num2 = %d", num1, num2);

getch() ;

}

void swap(int *a, int *b) // called function

{

int temp ;

temp = *a ;

*a = *b ;

*b = temp ;

}

Output:

Difference between call by value and call by reference in c
No. Call by value Call by reference

1 A copy of the value is passed into the

function

An address of value is passed into the

function

2 Changes made inside the function is

limited to the function only. The

values of the actual parameters do not

change by changing the formal

parameters.

Changes made inside the function

validate outside of the function also.

The values of the actual parameters do

change by changing the formal

parameters.

3 Actual and formal arguments are

created at the different memory

location

Actual and formal arguments are

created at the same memory location

Chapter 5 Functions

13 | P a g e

Recursion in C

Recursion is the process which comes into existence when a function calls a copy of itself to
work on a smaller problem. Any function which calls itself is called recursive function, and
such function calls are called recursive calls.

In the following example, recursion is used to calculate the factorial of a number.

#include <stdio.h>

int fact (int);

int main()

{

int n,f;

printf("Enter the number whose factorial you want to calculate?");

scanf("%d",&n);

f = fact(n);

printf("factorial = %d",f);

}
int fact(int n)

{

if (n==0)
{

return 0;

}
else if (n == 1)

{
return 1;

}

else
{

return n*fact(n-1);

}
}

Output

Enter the number whose factorial you want to calculate?5

factorial = 120

Let's see an example to find the nth term of the Fibonacci series.

#include<stdio.h>

int fibonacci(int);

void main ()

{

int n,f;

printf("Enter the value of n?");

scanf("%d",&n);

f = fibonacci(n);
printf("%d",f);

Chapter 5 Functions

14 | P a g e

}

int fibonacci (int n)
{

if (n==0)

{
return 0;

}
else if (n == 1)

{

return 1;
}

else

{
return fibonacci(n-1)+fibonacci(n-2);

}
}

Output

Enter the value of n?12
144

Storage Classes in C

Storage classes in C are used to determine the lifetime, visibility, memory location, and initial
value of a variable. There are four types of storage classes in C

o Automatic

o External

o Static

o Register

Storage
Classes

Storage
Place

Default
Value

Scope Lifetime

auto RAM Garbage

Value

Local Within function

extern RAM Zero Global Till the end of the main

program Maybe declared

anywhere in the program

static RAM Zero Local Till the end of the main

program, Retains value

between multiple functions

call

register Register Garbage

Value

Local Within the function

Chapter 6 Pointers

1 | P a g e

C Pointers

The pointer in C language is a variable which stores the address of another variable. This
variable can be of type int, char, array, function, or any other pointer. The size of the pointer
depends on the architecture. However, in 32-bit architecture the size of a pointer is 2 byte.

Consider the following example to define a pointer which stores the address of an integer.

int n = 10;

int* p = &n; // Variable p of type pointer is pointing to the address of the variable n of type intege

r.

Declaring a pointer

The pointer in c language can be declared using * (asterisk symbol). It is also known as
indirection pointer used to dereference a pointer.

int *a;//pointer to int

char *c;//pointer to char

Pointer Example

An example of using pointers to print the address and value is given below.

As you can see in the above figure, pointer variable stores the address of number variable, i.e.,
fff4. The value of number variable is 50. But the address of pointer variable p is aaa3.

By the help of * (indirection operator), we can print the value of pointer variable p.

Let's see the pointer example as explained for the above figure.

Chapter 6 Pointers

2 | P a g e

#include<stdio.h>

int main(){

int number=50;

int *p;

p=&number;//stores the address of number variable

printf("Address of p variable is %x \n",p); // p contains the address of the number therefore prin

ting p gives the address of number.

printf("Value of p variable is %d \n",*p); // As we know that * is used to dereference a pointer th

erefore if we print *p, we will get the value stored at the address contained by p.

return 0;

}

Output

Advantage of pointer
1. Pointers reduce the length and complexity of a program.

2. They increase execution speed.

3. A pointer enables us to access a variable that is defined outside the function.

4. Pointers are more efficient in handling the data tables.

5. The use of a pointer array of character strings results in saving of data storage space in

memory.

6. It supports dynamic memory management.

Usage of pointer

There are many applications of pointers in c language.

1) Dynamic memory allocation

In c language, we can dynamically allocate memory using malloc() and calloc() functions
where the pointer is used.

2) Arrays, Functions, and Structures

Pointers in c language are widely used in arrays, functions, and structures. It reduces the code
and improves the performance.

Address of number variable is fff4
Address of p variable is fff4
Value of p variable is 50

Chapter 6 Pointers

3 | P a g e

NULL Pointer

A pointer that is not assigned any value but NULL is known as the NULL pointer. If you don't
have any address to be specified in the pointer at the time of declaration, you can assign NULL
value. It will provide a better approach.

 int *p=NULL;

In the most libraries, the value of the pointer is 0 (zero).

Declaration of C Pointer variable

General syntax of pointer declaration is,

datatype *pointer_name;

Data type of a pointer must be same as the data type of the variable to which the pointer

variable is pointing. void type pointer works with all data types, but is not often used.

Here are a few examples:

int *ip // pointer to integer variable

float *fp; // pointer to float variable

double *dp; // pointer to double variable

char *cp; // pointer to char variable

Initialization of C Pointer variable

Pointer Initialization is the process of assigning address of a variable to a pointer variable.

Pointer variable can only contain address of a variable of the same data type. In C language

address operator & is used to determine the address of a variable. The & (immediately

preceding a variable name) returns the address of the variable associated with it.

#include<stdio.h>

void main()

{

int a = 10;

int *ptr; //pointer declaration

Chapter 6 Pointers

4 | P a g e

ptr = &a; //pointer initialization

}

Pointer Arithmetic in C

We can perform arithmetic operations on the pointers like addition, subtraction, etc.

Increment

Decrement

Addition

Subtraction

Comparison

Incrementing Pointer in C

If we increment a pointer by 1, the pointer will start pointing to the immediate next location.
This is somewhat different from the general arithmetic since the value of the pointer will get

increased by the size of the data type to which the pointer is pointing.

Let's see the example of incrementing pointer variable on 64-bit architecture.

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+1;

printf("After increment: Address of p variable is %u \n",p); // in our case, p will get

incremented by 4 bytes.

return 0;

}

Output

Address of p variable is 3214864300

After increment: Address of p variable is 3214864304

Chapter 6 Pointers

5 | P a g e

Traversing an array by using pointer

#include<stdio.h>

void main ()

{

int arr[5] = {1, 2, 3, 4, 5};

int *p = arr;

int i;

printf("printing array elements...\n");

for(i = 0; i< 5; i++)

{

printf("%d ",*(p+i));

}

}

Output

printing array elements...

1 2 3 4 5

Decrementing Pointer in C

Like increment, we can decrement a pointer variable. If we decrement a pointer, it will start
pointing to the previous location. The formula of decrementing the pointer is given below:

new_address= current_address - i * size_of(data type)

Example

#include <stdio.h>

void main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-1;

printf("After decrement: Address of p variable is %u \n",p); // P will now point to the

immidiate previous location.

Chapter 6 Pointers

6 | P a g e

}

Output

Address of p variable is 3214864300

After decrement: Address of p variable is 3214864296

C Pointer Addition

We can add a value to the pointer variable. The formula of adding value to pointer is given
below:

new_address= current_address + (number * size_of(data type))

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p+3; //adding 3 to pointer variable

printf("After adding 3: Address of p variable is %u \n",p);

return 0;

}

Output

Address of p variable is 3214864300

After adding 3: Address of p variable is 3214864312

C Pointer Subtraction

Like pointer addition, we can subtract a value from the pointer variable. Subtracting any

number from a pointer will give an address. The formula of subtracting value from the pointer

variable is given below:

new_address= current_address - (number * size_of(data type))

#include<stdio.h>

int main(){

int number=50;

int *p;//pointer to int

Chapter 6 Pointers

7 | P a g e

p=&number;//stores the address of number variable

printf("Address of p variable is %u \n",p);

p=p-3; //subtracting 3 from pointer variable

printf("After subtracting 3: Address of p variable is %u \n",p);

return 0;

}

Output

Address of p variable is 3214864300

After subtracting 3: Address of p variable is 3214864288

C Program to Print Elements of Array Using Pointers

include<stdio.h>

main()

{

int a[5]= {5,4,6,8,9};

int *p=&a[0];

int i;

//clrscr();

for(i=0; i<5; i++)

printf("\nArray[%d] is %d ",i,*(p+i));

for(i=0; i<5; i++)

printf("\n %d at %u ",*(p+i),(p+i));

getch();

}

OUTPUT

Array[0] is 5

Array[1] is 4

Array[2] is 6
Array[3] is 8

Array[4] is 9

5 at 2686708
4 at 2686712

6 at 2686716
8 at 2686720

Chapter 6 Pointers

8 | P a g e

9 at 2686724

Pointers as Function Argument in C

Pointer as a function parameter is used to hold addresses of arguments passed during

function call. This is also known as call by reference. When a function is called by reference

any change made to the reference variable will effect the original variable.

#include <stdio.h>

void swap(int *a, int *b);

int main()

{

int m = 10, n = 20;

printf("m = %d\n", m);

printf("n = %d\n\n", n);

swap(&m, &n); //passing address of m and n to the swap function
printf("After Swapping:\n\n");

printf("m = %d\n", m);

printf("n = %d", n);
return 0;

}

/*

pointer 'a' and 'b' holds and
points to the address of 'm' and 'n'

*/

void swap(int *a, int *b)
{

int temp;

temp = *a;
*a = *b;

*b = temp;

}

m = 10
n = 20

After Swapping:

m = 20

n = 10

Chapter 6 Pointers

9 | P a g e

Functions returning Pointer variables

A function can also return a pointer to the calling function. In this case you must be careful,

because local variables of function doesn't live outside the function. They have scope only

inside the function. Hence if you return a pointer connected to a local variable, that pointer

will be pointing to nothing when the function ends.

#include <stdio.h>

int* larger(int*, int*);

void main()
{

int a = 15;

int b = 92;

int *p;

p = larger(&a, &b);

printf("%d is larger",*p);

}

int* larger(int *x, int *y)

{

if(*x > *y)
return x;

else
return y;

}

92 is larger

Pointer to functions

It is possible to declare a pointer pointing to a function which can then be used as an

argument in another function. A pointer to a function is declared as follows,

type (*pointer-name)(parameter);

Example:

#include <stdio.h>

int sum(int x, int y)

{
return x+y;

}

int main()

{

Chapter 6 Pointers

10 | P a g e

int (*fp)(int, int);

fp = sum;

int s = fp(10, 15);

printf("Sum is %d", s);

return 0;

}

25

C – Structure using Pointer

C structure can be accessed in 2 ways in a C program. They are,

Using normal structure variable

Using pointer variable

Dot(.) operator is used to access the data using normal structure variable and arrow (->) is

used to access the data using pointer variable. You have learnt how to access structure data

using normal variable in C – Structure topic. So, we are showing here how to access structure

data using pointer variable in below C program.

EXAMPLE PROGRAM FOR C STRUCTURE USING POINTER:

In this program, “record1” is normal structure variable and “ptr” is pointer structure variable.

As you know, Dot(.) operator is used to access the data using normal structure variable and

arrow(->) is used to access data using pointer variable.

#include <stdio.h>

#include <string.h>

struct student

{
int id;

char name[30];
float percentage;

};

int main()

{

int i;

struct student record1 = {1, "Raju", 90.5};

struct student *ptr;

ptr = &record1;

printf("Records of STUDENT1: \n");

printf(" Id is: %d \n", ptr->id);

Chapter 6 Pointers

11 | P a g e

printf(" Name is: %s \n", ptr->name);

printf(" Percentage is: %f \n\n", ptr->percentage);

return 0;

}

OUTPUT:
Records of STUDENT1:

Id is: 1

Name is: Raju
Percentage is: 90.500000

Implement a program to demonstrate concept of pointers to function.

Pointer to function:

include<stdio.h>

int sum(int x, int y)

{

return x+y;

}

int main()
{

int s;

int(*fp)(int, int);

fp = sum;

s = fp(10,12);

printf(“Sum = %d”,s);

return 0;

}

	Fundamentals of algorithms Explain the term algorithm
	What are the Characteristics of an Algorithm?
	Example:
	Explain the term Flowchart
	Basic Symbols used in Flowchart Designs
	What are the advantages Of Using FLOWCHARTS?
	Write algorithm and flowchart of addition of two numbers
	Write algorithm and flowchart to find sum and average of three numbers
	Write algorithm and draw flow-chart to print even numbers from 1 to 100.
	Algorithm & Flowchart to find the given number is odd or even.
	Algorithm & Flowchart to find Factorial of number n (n!=1x2x3x…n)
	What is Pseudocode
	Example: (1)
	C Program to Find Volume and Surface Area of Sphere
	C program to swap two numbers (interchange the content of two variables)
	If a five-digit number is input through the keyboard, write a program to calculate the sum of its digits. (Hint: Use the modulus operator ‘%’)
	Draw a flowchart for checking whether given number is prime or not.
	Features of C Language
	Basic Structure of C Program
	Header Files
	Explain any four library functions under conio.h header file.
	Give the significance of <math.h> and <stdio.h> header files.
	main() function in C
	In above syntax;
	Character set of C
	Special Symbols - ~ @ # $ % ^ & * () _ - + = { } [] ; : ' " / ? . > , < \ | tab newline space NULL bell backspace verticaltab etc.,
	C Tokens
	C Keywords
	Properties of Keywords

	C Identifiers
	int marks;
	Rules for Creating Identifiers

	C data types
	Integer Data type
	Floating Point data types
	Character data type

	C Variables
	C Constants
	Example
	Example 'A'
	'+'
	"This is btechsmartclass"
	1. Using the 'const' keyword
	Example (1)
	Example (2)

	C Operators
	1. Arithmetic Operators
	3. Logical Operators
	5. Assignment Operators
	7. Conditional Operator
	Implement a program to demonstrate logical AND operator.
	Explain increment and decrement operator.
	Pre-increment unary operator:
	Programming Code 1:
	Post-increment unary operator:
	Syntax of Post-increment unary operator:
	Example Post-increment unary operator:
	Programming Code 1: (1)
	Decrement Operator in C Programming :
	Different Types of Decrement Operation :
	A. Pre Decrement Operator
	Output :
	Conditional Operator (?:)
	Explain conditional operator with example.

	Typecasting
	average = (float) totalMarks / maxMarks * 100 ;

	C Input Functions
	1. scanf()
	3. getch()
	5. fscanf()
	Output:
	Output: (1)
	Output: (2)
	Output: (3)
	Output: (4)
	Output: (5)
	C Output Functions
	1. printf()
	3. puts()
	Output: (6)
	Output: (7)
	Output: (8)
	Output: (9)
	Output: (10)
	Output: (11)
	Output: (12)
	Output: (13)
	Comment
	State any four math functions with its use.
	Develop a simple ‘C’ program for addition and multiplication of two integer numbers.
	Explain following functions:
	with suitable examples.
	putchar() -
	getch() -
	putch()-
	State the use of printf() & scanf() with suitable example. printf() & scanf():
	Program to convert given number of days into months and days in c
	Output
	Program to calculate area of circle in c
	Program to find the maximum of three numbers
	Program to check positive, negative or zero
	C program to convert temperature from degree fahrenheit to Celsius Temperature conversion formula
	Program to convert temperature from degree Celsius to Kelvin
	Explain how formatted input can be obtain, give suitable example.
	Decision making in C
	State any four decision making statement. Decision making statement:
	Decision making with if statement
	Simple if statement
	Example:
	if...else statement
	Nested if else statement
	Example: (1)
	C Program Enter the Student Marks and Find the Percentage and Grade
	Switch statement in C
	Syntax of switch...case
	switch Statement Flowchart
	Output (1)
	Example of switch statement
	if...else Ladder
	Syntax of nested if...else statement.
	Example 3: C if...else Ladder
	Output (2)
	write a program to check whether given year is leap or not
	write a program to check whether the string is palindrome or not
	C program for palindrome without using string functions
	C program to find the largest of three numbers using Conditional Operator
	Sample Output:
	C program to check whether a character is vowel or consonant
	C program to print day of week name using switch case
	C PROGRAM FOR GRADING SCHEME USING SWITCH CASE
	Find triangle is equilateral, isosceles or right angled Code in C Language
	Print the season name of the year based on the month number
	break;
	break; (1)
	C For loop
	Flow Diagram of For loop
	Design a program to print a message 10 times.
	C – while loop
	Flow Diagram of while loop
	do...while loop
	Flowchart of do...while Loop
	Flow diagram of do while loop
	Output: (14)
	write a program to add numbers until user enters zero.

	C – goto statement
	Syntax of goto statement in C
	Flow Diagram of goto
	C – Continue statement
	Flow diagram of continue statement
	C – break statement
	Flow diagram of break statement
	Example – Use of break in a while loop
	Output:
	c program to find sum of digits of a number
	Write a program in C to display the multiplication table vertically from 1 to n.
	Fibonacci Series in C without recursion
	Define Array
	The declaration form of one-dimensional array is
	Characteristics of Arrays in C
	Declaration of C Array
	Initialization of C Array
	Array: Declaration with Initialization
	Array Example: Sorting an array
	Two Dimensional Array in C
	Declaration of two dimensional Array in C
	Initialization of 2D Array in C
	Two-dimensional array example in C
	2D array example: Storing elements in a matrix and printing it.
	Addition of two matrix in C
	Following operations can be performed on arrays:
	Character array or String
	Declaration of String or Character array
	Syntax for string declaration :
	Initialization of String
	Examples 1 :Using sequence of characters.
	Example 2 : Using assignment operator
	Input string using getche() function
	Examples for input string with getche() function
	Examples for input string with scanf() function
	Input string using gets() function
	Examples for input string with gets() function
	C String Functions
	C Program to Find the Length of a String without using the Built-in Function
	C Program to Compare Two Strings Without Using Library Function
	C Program to Copy One String into Other Without Using Library Function.
	C Program to Concat Two Strings without Using Library Function
	Reverse String Without Using Library Function [Strrev]
	Output :
	What is Structure
	Declaring structure variable
	1st way:
	2nd way:
	Accessing members of the structure
	C Structure example
	Give a method to create, declare and initialize structure also develop a program to demonstrate nested structure.
	Initialization:-
	Program:-
	Develop a program using structure to print data of three students having data members name, class, percentage.
	Write a program to declare structure employee having data member name, age, street and city. Accept data for two employees and display it.
	C – Typedef
	AN ALTERNATIVE WAY FOR STRUCTURE DECLARATION USING TYPEDEF IN C:
	OUTPUT:
	OUTPUT: (1)
	Enumerated Type Declaration
	Output
	C Program To Search An Element In An Array Using Standard Method
	Write a program to declare the structure student, having data members as rollno, name and percentage. Accept data for five students and display the same.
	Output (1)
	Concept and need of function WHAT IS C FUNCTION?
	Need of functions in C
	Library Functions: Math functions
	C Math Functions
	C Math Example
	Explain any four library functions under conio.h header file.
	C User-defined functions
	Example: User-defined function
	Scope of Variable in C
	 Before the function definition (Global Declaration)
	 In the function definition parameters (Formal Parameters)
	Output: (1)
	Output: (2)
	Output: (3)
	 Actual Parameters
	Call by Value
	Output: (4)
	Difference between call by value and call by reference in c
	Let's see an example to find the nth term of the Fibonacci series.
	Storage Classes in C
	C Pointers
	Declaring a pointer
	Pointer Example
	Advantage of pointer
	Usage of pointer
	1) Dynamic memory allocation
	2) Arrays, Functions, and Structures

	NULL Pointer
	Declaration of C Pointer variable
	Pointer Arithmetic in C
	Incrementing Pointer in C
	Let's see the example of incrementing pointer variable on 64-bit architecture.
	Output (2)
	Traversing an array by using pointer
	Output (3)
	Decrementing Pointer in C
	Example
	Output (4)
	C Pointer Addition
	Output (5)
	C Pointer Subtraction
	Output (6)
	C Program to Print Elements of Array Using Pointers
	OUTPUT
	Pointers as Function Argument in C
	Functions returning Pointer variables
	Pointer to functions
	Example:
	C – Structure using Pointer
	EXAMPLE PROGRAM FOR C STRUCTURE USING POINTER:
	Implement a program to demonstrate concept of pointers to function. Pointer to function:

